好文档 - 专业文书写作范文服务资料分享网站

数据结构课后习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

(2)for (i=0; i

for (j=0; j

答案:O(m*n)

解释:语句a[i][j]=0;的执行次数为m*n。 (3)s=0;

for i=0; i

for(j=0; j

s+=B[i][j]; sum=s;

2

答案:O(n)

解释:语句s+=B[i][j];的执行次数为n。 (4)i=1; while(i<=n) i=i*3; 答案:O(log3n)

解释:语句i=i*3;的执行次数为??log3n?。 (5)x=0;

for(i=1; i

答案:O(n)

解释:语句x++;的执行次数为n-1+n-2+……+1= n(n-1)/2。 (6)x=n; nn108 C63.5 C1 C-1 C1 Cext=s;

2

(*s).next=(*p).next;

C.s->next=p->next; p->next=s->next;

D.s->next=p->next; p->next=s;

答案:D

(14) 在双向链表存储结构中,删除p所指的结点时须修改指针( )。 A.p->next->prior=p->prior; p->prior->next=p->next; B.p->next=p->next->next; p->next->prior=p; C.p->prior->next=p; p->prior=p->prior->prior; D.p->prior=p->next->next; p->next=p->prior->prior; 答案:A

(15) 在双向循环链表中,在p指针所指的结点后插入q所指向的新结点,其修改指针的操作是( )。

A.p->next=q; q->prior=p; p->next->prior=q; q->next=q;

B.p->next=q; p->next->prior=q; q->prior=p; q->next=p->next; C.q->prior=p; q->next=p->next; p->next->prior=q; p->next=q; D.q->prior=p; q->next=p->next; p->next=q; p->next->prior=q; 答案:C 2.算法设计题

(1)将两个递增的有序链表合并为一个递增的有序链表。要求结果链表仍使用原来两个链表的存储空间, 不另外占用其它的存储空间。表中不允许有重复的数据。

[题目分析]

合并后的新表使用头指针Lc指向,pa和pb分别是链表La和Lb的工作指针,初始化为相应链表的第一个结点,从第一个结点开始进行比较,当两个链表La和Lb均为到达表尾结点时,依次摘取其中较小者重新链接在Lc表的最后。如果两个表中的元素相等,只摘取La表中的元素,删除Lb表中的元素,这样确保合并后表中无重复的元素。当一个表到达表尾结点,为空时,将非空表的剩余元素直接链接在Lc表的最后。

[算法描述]

void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc)

{3 C想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作( )。 A.x=top->data;top=top->link; B.top=top->link;x=top->link; C.x=top;top=top->link; 答案:A

解释:x=top->data将结点的值保存到x中,top=top->link栈顶指针指向栈顶下一结点,

即摘除栈顶结点。

(5)设有一个递归算法如下

??? ??? int fact(int n) {? 3 Cn]存储,初始栈顶指针top设为n+1,则元素x进栈的正确操作是( )。

A.top++; V[top]=x; C.top--; V[top]=x; 答案:C

解释:初始栈顶指针top为n+1,说明元素从数组向量的高端地址进栈,又因为元素存储在向量空间V[1..n]中,所以进栈时top指针先下移变为n,之后将元素x存储在V[n]。 (10)设计一个判别表达式中左,右括号是否配对出现的算法,采用( )数据结构最佳。 A.线性表的顺序存储结构 B.队列 C. 线性表的链式存储结构 D. 栈 答案:D

解释:利用栈的后进先出原则。

(11)用链接方式存储的队列,在进行删除运算时( )。 A. 仅修改头指针 B. 仅修改尾指针

C. 头、尾指针都要修改 D. 头、尾指针可能都要修改 答案:D

D.x=top->link;

B.V[top]=x; top++; D.V[top]=x; top--;

解释:一般情况下只修改头指针,但是,当删除的是队列中最后一个元素时,队尾指针

也丢失了,因此需对队尾指针重新赋值。

(12)循环队列存储在数组A[0..m]中,则入队时的操作为( )。 A. rear=rear+1 B. rear=(rear+1)%(m-1) C. rear=(rear+1)%m D. rear=(rear+1)%(m+1) 答案:D

解释:数组A[0..m]中共含有m+1个元素,故在求模运算时应除以m+1。

(13)最大容量为n的循环队列,队尾指针是rear,队头是front,则队空的条件是( )。 A. (rear+1)%n==front B. rear==front C.rear+1==front D. (rear-l)%n==front 答案:B

解释:最大容量为n的循环队列,队满条件是(rear+1)%n==front,队空条件是

rear==front。

(14)栈和队列的共同点是( )。

A. 都是先进先出 B. 都是先进后出 C. 只允许在端点处插入和删除元素 D. 没有共同点 答案:C

解释:栈只允许在栈顶处进行插入和删除元素,队列只允许在队尾插入元素和在队头删

除元素。

(15)一个递归算法必须包括( )。

A. 递归部分 B. 终止条件和递归部分 C. 迭代部分 D. 终止条件和迭代部分 答案:B

2.算法设计题

(1)将编号为0和1的两个栈存放于一个数组空间V[m]中,栈底分别处于数组的两端。当第0号栈的栈顶指针top[0]等于-1时该栈为空,当第1号栈的栈顶指针top[1]等于m时该栈为空。两个栈均从两端向中间增长。试编写双栈初始化,判断栈空、栈满、进栈和出栈等算法的函数。双栈数据结构的定义如下:

Typedef struct

{int top[2],bot[2];

0’9’0’9’ 0’0’9’0’0’9’0’IOIIOIOO B.

IOOIOIIO C. IIIOIOIO D. IIIOOIOO

②通过对①的分析,写出一个算法,判定所给的操作序列是否合法。若合法,返回true,否则返回false(假定被判定的操作序列已存入一维数组中)。

答案:

①A和D是合法序列,B和C 是非法序列。 ②设被判定的操作序列已存入一维数组A中。

int Judge(char A[])

0’0’M-1]实现循环队列,其中M是队列长度。设队头指针 front和队尾指针rear,约定front指向队头元素的前一位置,rear指向队尾元素。定义front=rear时为队空,(rear+1)%m=front 为队满。约定队头端入队向下标小的方向发展,队尾端入队向下标大的方向发展。

[算法描述] ①

#define M 队列可能达到的最大长度 typedef struct {elemtp data[M]; int front,rear; }cycqueue; ②

elemtp delqueue ( cycqueue Q)

012121111212

C010102101 C100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=( )。

A.808 B.818 C.1010 D.1020 答案:B

解释:以行序为主,则LOC[5,5]=[(5-1)*100+(5-1)]*2+10=818。

(7)设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( )。

A.BA+141 B.BA+180 C.BA+222 D.BA+225 答案:B

解释:以列序为主,则LOC[5,8]=[(8-1)*8+(5-1)]*3+BA=BA+180。

(8)设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为( )。

A.13 B.32 C.33 D.40 答案:C

(9)若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i

A.i*(i-1)/2+j B.j*(j-1)/2+i C.i*(i+1)/2+j D.j*(j+1)/2+i 答案:B

(10)二维数组A的每个元素是由10个字符组成的串,其行下标i=0,1,…,8,列下标

j=1,2,…,10。若A按行先存储,元素A[8,5]的起始地址与当A按列先存储时的元素( )的起始地址相同。设每个字符占一个字节。

A.A[8,5] B.A[3,10] C. A[5,8] D.A[0,9] 答案:B

解释:设数组从内存首地址M开始顺序存放,若数组按行先存储,元素A[8,5]的起始

地址为:M+[(8-0)*10+(5-1)]*1=M+84;若数组按列先存储,易计算出元素A[3,10]的起始地址为:M+[(10-1)*9+(3-0)]*1=M+84。故选B。

(11)设二维数组A[1.. m,1.. n](即m行n列)按行存储在数组B[1.. m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。

A.(i-1)*n+j B.(i-1)*n+j-1 C.i*(j-1) D.j*m+i-1

答案:A

解释:特殊值法。取i=j=1,易知A[1,1]的的下标为1,四个选项中仅有A选项能

确定的值为1,故选A。

(12)数组A[0..4,-1..-3,5..7]中含有元素的个数( )。

A.55 B.45 C.36 D.16 答案:B

解释:共有5*3*3=45个元素。

(13)广义表A=(a,b,(c,d),(e,(f,g))),则Head(Tail(Head(Tail(Tail(A)))))的值为( )。 A.(g) B.(d) C.c D.d 答案:D

解释:Tail(A)=(b,(c,d),(e,(f,g)));Tail(Tail(A))=( (c,d),(e,(f,g))); Head(Tail(Tail(A)))= (c,d);

Tail(Head(Tail(Tail(A))))=(d);Head(Tail(Head(Tail(Tail(A)))))=d。

(14)广义表((a,b,c,d))的表头是( ),表尾是( )。

A.a B.( ) C.(a,b,c,d) D.(b,c,d) 答案:C、B

解释:表头为非空广义表的第一个元素,可以是一个单原子,也可以是一个子表,

((a,b,c,d))的表头为一个子表(a,b,c,d);表尾为除去表头之外,由其余元素构成的表,表为一定是个广义表,((a,b,c,d))的表尾为空表( )。

(15)设广义表L=((a,b,c)),则L的长度和深度分别为( )。

A.1和1 B.1和3 C.1和2 D.2和3 答案:C

解释:广义表的深度是指广义表中展开后所含括号的层数,广义表的长度是指广义表中

所含元素的个数。根据定义易知L的长度为1,深度为2。

2.应用题

(1)已知模式串t=‘abcaabbabcab’写出用KMP法求得的每个字符对应的next和nextval函数值。

答案:

模式串t的next和nextval值如下: j

1 2 3 4 5 6 7 8 9 10 11 12

6g7wh12faz4n7xz5eecp3x5if1klmb00ave
领取福利

微信扫码领取福利

微信扫码分享