好文档 - 专业文书写作范文服务资料分享网站

关于二项分布与超几何分布问题区别举例

天下 分享 时间: 加入收藏 我要投稿 点赞

关于“二项分布”与“超几何分布”问题举例 一.基本概念 1.超几何分布

一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件?X=k?发生的概率为:P(X=k)=

kn?kCM?CN?MnCN,k=

0,1,2,3,??,m;其中,m = min?M,n?,且n? N , M? N . n,M,N ? N为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几M变量X服从超几何分布.其中,EX= n?

N2.二项分布

在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:

?

P(X=k)= Cnp(1-p)(k=0,1,2,3,?,n),此时称随机变量X服从二项分布. 记作:X ? B(n,p),EX= np

3.“二项分布”与“超几何分布”的联系与区别

(1)“二项分布”所满足的条件

?每次试验中,事件发生的概率是相同的;是一种放回抽样.?各次试验中的事件是相互独立的;?每次试验只有两种结果,事件要么发生,要么不发生;?随机变量是这n次独立重复试验中事件发生的次数.

(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;

kkn-k

(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.事实上,对于“超几何M分布”中,若p= ,则EX= ?k?CNni?1kMn?k?CN?MnCNM = n? .N“超几何分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化. 共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;

2、超几何分布需要知道总体的容量,

二项分布不需要知道总体容量,但需要知道“成功率”;

联系:当产品的总数很大时,超几何分布近似

于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题

例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列;

(2)不放回抽样时,取到黑球的个数Y的分布列.

解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重

?复试验,则X~B???3,1?. 5?64?1??4?∴P(X?0)?C???????5??5?1250303;

48?1??4?P(X?1)?C???????5??5?12513212312; ; .

12?1??4?P(X?2)?C???????5??5?1251?4?3?1?P(X?3)?C3???????5??5?12530因此,X的分布列为

0 1 2 3 (2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:

03C2C7P(Y?0)?38?C1015;

12C2C7P(Y?1)?38?C1015;

21C2C1P(Y?2)?38?C1015.

因此,Y的分布列为

0 1 2 例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:

关于二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件?X=k?发生的概率为:P(X=k)=kn?kCM?CN?MnCN,k=0,1,2,3,??,m;其中,m=min?M,n?,且n?N,M?N.n,M,N?N为超几何分布;如果一
推荐度:
点击下载文档文档为doc格式
6fpd09abbm4mn0g1mmp04oweh0q6fq00okn
领取福利

微信扫码领取福利

微信扫码分享