案 三、解答题(本题共76分) 19.(1)解:原式=x2?6x?9??x2?3x?2? ············· (2分) =x2?6x?9?x2?3x?2 ·············· (3分) =9x?7. ···················· (4分) (2)解:原式= =x?x?2?2 ··············· (2分) ?x?2x?2x?2????x2 ··················· (3分) ?x?2x?2 =1. ······················ (4分) (3)解:移项,得x2?2x?3,配方,得?x?1??4, ········· (2分) ∴x?1??2,∴x1??1,x2?3. ·············· (4分) (注:此题还可用公式法,分解因式法求解,请参照给分) 20.解:(1)π?2; ······················ (2分) (2)答案不唯一,以下提供三种图案. 2(注:如果花边图案中四个图案均与基本图案相同,则本小题只给2分;未画满四个“田”字格的,每缺1题个扣1分. (第20 图2)) ······· (621.(1)935.7,859.0; ····················· (4分) (2)解:①2004~2008移动电话年末用户逐年递增. ②2008年末固定电话用户达803.0万户. ········ (8分) (注:答案不唯一,只要符合数据特征即可得分) 22.解:(1)10,50; ······················ (2分) (2)解:解法一(树状图): 第一第二1和 10 221230 533142530 2第 6 3页0 1342313 ······························ (6分) 从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=解法二(列表法): 第一次 第二次 0 10 20 30 82 ······· (8分) ?.1230 10 20 30 10 20 30 30 40 50 10 20 30 30 40 50 ···························· (6分) (以下过程同“解法一”) ················· (8分) 23.解:分别过A、D作AM?BC于M,DG?BC于G.过E作EH?DG于H,则四边形AMGD为矩形. 2·sinB?12??62.在Rt△ABM中,AM?AB 2A D H E 水F C B M G (第23∴DG?62. ························· (3分) ·cos?EDH?2?在Rt△DHE中,DH?DE3?3. ········· (6分) 2∴HG?DG?DH?62-3≈6?1.41?1.73≈6.7. ·········· (7分) 答:水深约为6.7米. ···················· (8分) (其它解法可参照给分) 第 7 页 24.解:(1)由题意,得:??a?b?1.4,?a??0.1,解得? ········ (2分)
?4a?2b?2.6.?b?1.5. ∴y乙??0.1x2?1.5x. ·················· (3分)
(2)W?y甲?y乙?0.3?10?t????0.1t2?1.5t?.
∴W??0.1t2?1.2t?3. ·················· (5分) W??0.1?t?6?2?6.6.∴t?6时,W有最大值为6.6. ···∴10?6?4(吨).
答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售
利润之和最大,最大利润是6.6万元. ··········25.解:(1)EA1?FC. ······················证明:(证法一)QAB?BC,??A??C. 由
旋
转
可
知
,
AB?BC1,?A??C1,?ABE??C1BF,
∴△ABE≌△C1BF. ···········∴BE?BF,又QBA1?BC,
∴BA1?BE?BC?BF.即EA1?FC. ·····(证法二)QAB?BC,??A??C. 由旋转可知,?A1??C,A1B=CB,而
?EBC??FBA1,
∴△A1BF≌△CBE. ···········即EA1?FC. ·············· (2)四边形BC1DA是菱形. ················证明:Q?A1??ABA1?30°,?AC11∥AB,同理AC∥BC1. 第 8 页
7分)
8分)
1分)
3分) 4分)
3分) 4分)
5分)
( ( ( ( ( ( ( (∴四边形BC1DA是平行四边形. ·········· (7分) 又QAB?BC1,∴四边形BC1DA是菱形. ········ (8分) (3)(解法一)过点E作EG?AB于点G,则AG?BG?1. 在Rt△AEG中, AE?AG12cosA?cos30°?33.……(10分) 由(2)知四边形BC1DA是菱形, ∴ED?AD?AE?2?233. ··········(解法二)Q?ABC?120°,?ABE?30°,∴?EBC?90°. 在Rt△EBC中,BE?BC·tanC?2?tan30°?233. ?EA1?BA1?BE?2?233. ············∴ED?EA?21?233. ············(其它解法可参照给分) 26.(1)解:由2x?833?0,得x??4.?A点坐标为??4,0?. 由?2x?16?0,得x?8.?B点坐标为?8,0?. ∴AB?8???4??12. ··················?28由??y?x?,?x?5,∴C点的坐标为??33解得?5,6?. ·····?y??2x?16.?y?6.∴S1△ABC?2AB·y1C?2?12?6?36. ············ (2)解:∵点D在l1上且xD?xB?8,?y28D?3?8?3?8. ∴D点坐标为?8,.8? ·················又∵点E在l2上且yE?yD?8,??2xE?16?8.?xE?4. ∴E点坐标为?4,.8? ··················第 9 页 12分)10分)12分)2分) 3分) 4分) 5分) 6分) ( ( ( ( ( ( ( (∴OE?8?4?4,EF?8. ················· (7分) (3)解法一:①当0≤t?3时,如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR(t?0时,为四边形CHFG).过C作CM?AB于M,则Rt△RGB∽Rt△CMB. yl∴BGRGy2 BMl?,即ty?RGl2 ,∴RG?2t. l2E1CM36l1 C即 S?D ?4 44D E Dl1 R3t2?16E3t?3. ···············C C 希望以上资料对你有所帮助,附励志名言 R R 3条: A O F M G B x A F O G MB x F A G O M B x (图1) (图2) (图3) 1、有志者自有千计万计,无志者只感千难万难。 2、实现自己既定的目标,必须能耐得住寂寞单干。 3、世界会向那些有目标和远见的人让路。 第 10 页 10分)(