导数专练7——数列不等式的证明
ex1.已知函数f(x)?(x??1). x?1(Ⅰ)求函数f(x)的最小值;
12n?1nnne(Ⅱ)求证:()n?()n???()?()?(n?N) nnnne?1exxex【解答】解:(Ⅰ)函数f(x)?, (x??1)的导数为f?(x)?(x?1)2x?1由f?(x)?0可得x?0,由由f?(x)?0可得?1?x?0, 即有f(x)在(?1,0)递减,在(0,??)递增,
则x?0处f(x)取得极小值,也为最小值,且为f(0)?1;
ex(Ⅱ)由(Ⅰ)可得1,即exx?1,即有xln(x?1),
x?1当且仅当x?0取得等号,令1?x?kkk,则?1ln, nnn即k?nnlnkk(当且仅当n?k取得等号), ?ln()n.
nn12将k从1到n取值,可得1?nln()n.2?nln()n?,
nn(n?1)?nln(n?1nn),n?nln()n. nn12n?1n(n?1)?nn则有()ne1?n,()ne2?n,?,(,()nen?n. )ennnn12n?1nnn1?n即有()n?()n???()?()e?e2?n???e(n?1)?n?en?n
nnnne1?n(1?en)e?e1?ne???(n?N).
1?ee?1e?12.已知函数f(x)?ln(1?x)?x(a?R,a?0). 1?x1
(1)求f (x)的单调区间; (2)证明:?n?N*,有111?ln(?1)?; n?1nn(3)若an?1?11????lnn,证明:?n?N*,有an?an?1?0. 2n【解答】(1)解:f?(x)?11x. ??1?x(1?x)2(1?x)2令f?(x)?0,又x??1,则x?0, 令f?(x)?0,又x??1,则?1?x?0
故f(x)的递减区间是(?1,0),递增区间是(0,??)?(4分)
1111x(2)证明:设x??(0,1],则?ln(?1)???ln(x?1)?x,
nn?1nnx?1由(1)知:f (x)?ln(1?x)?x,f (0)?0, x?1x?ln(x?1). x?1当x?(0,1)时,f (x)单调递增,?f (x)?0,即
再来证明:当x?(0,1)时ln(1?x)?x.
1?x?1??0, x?1x?1构造函数m(x)?ln(x?1)?x x?(0,1),则m?(x)?故m(x)在(0,1)上递减,
?当x?(0,1)时,m(x)?m(0)?0,即ln(1?x)?x,
综上可知:?n?N*有
111?ln(?1)?.?(8分) n?1nn111?ln(?1)? n?1nn(3)证明:由(2)的结论知,?n?N*有
?an?1?an?111?ln(n?1)?lnn??ln(1?)?0 n?1n?1n?an?an?1
2
又an?1?1111????lnn?ln(1?1)?ln(1?)???ln(1?)?lnn 2n2n3n?1?ln2?ln???ln?lnn?ln2?(ln3?ln2)???[ln(n?1)?lnn]?lnn?ln(n?1)?lnn?0
2n综上,?n?N*有an?an?1?0?(12分)
3.已知f(x)?asinx(a?R),g(x)?ex.
(1)若0?a1,判断函数G(x)?f(1?x)?lnx在(0,1)的单调性; (2)证明:sin1111?sin?sin???sin?ln2,(n?N?); 2222234(n?1)(3)设F(x)?g(x)?mx2?2(x?1)?k(k?Z),对?x?0,m?0,有F(x)?0恒成立,求k的最小值.
1【解答】(1)解:由题意:G(x)?asin(1?x)?lnx,G?(x)??acos(1?x)?,
x当0?x?1,0?a1时,?1,cosx?1,?G?(x)?0恒成立,
?函数G(x)?f(1?x)?g(x)在区间(0,1)上是增函数;
(2)证明:由(1)知,当a?1时,G(x)?sin(1?x)?lnx在(0,1)单调递增, 1?sin(1?x)?lnx?G(1)?0,?sin(1?x)?ln,(0?x?1),
x设1?x?11k(k?2),则, x?1??(1?k)2(1?k)2(1?k)2?sin1k(k?2)1?kk?2, ?ln?ln?ln22(1?k)(1?k)kk?1?sin11112334n?1n?2n?2?sin?sin???sin?ln?ln?ln?ln???ln?ln?ln2?ln?ln2223242(n?1)21223nn?1n?1, 即结论成立;
(3)解:由F(x)?g(x)?mx2?2(x?1)?k?ex?mx2?2x?k?2?0,
3