(ii)当p=1时,?01dx发散,∴对任何A<1,在[A,1]内不一致收敛,即 x?10dx在(-∞,1]内不一致收敛. px1p?1(7)记?0x(1?x)q?1dx=?x120p?1(1?x)q?1dx+?1xp?1(1?x)q?1dx=I1+I2.
21对I1在0≤x≤, 0 q-1 p0?112(1?x)q0?1且?xp?1(1?x)q?1dx收敛, 00120∴I1在0 2、从等式?ae解:∵?aeb?xyb?xy1?ay??ee?ay?e?by?e?bydy=dx(b>a>0). 出发,计算积分?0xx?ay??b??ee?ay?e?by?e?bydy=dx=?dx?e?xydy. 又 ,∴?00axxe-xy在[0,+∞)×[a,b]内连续,由M判别法知, ∴?0 ?????0e?xydx在[a,b]内一致收敛. b??b1e?ay?e?byb?xydyedxdydx=??==ln. ?aya0xa3、证明函数F(y)=?0e?(x?y)dx在(-∞,+∞)上连续. (提示:利用?0e?xdx=证:令x-y=u, 则F(y)= ??2??2π) 2???ye?u2du=?ey20?u2du+?0e???u2du=?e?udu+ y02π. 2∵关于y的积分下限函数?ye?udu在(-∞,+∞)上连续, ∴F(y)=?0??0e?(x?y)dx在(-∞,+∞)上连续. 2 4、求下列积分: (1)?0??e?a22x?e?bx222xdx (提示:利用?e0???x2dx= π); 2(2)?0????sinxt1?cosxyedt;(3)?e?xdx. 0tx2?t解:(1)∵∴?0??e?a22x?e?bx22222x=?a2ye?yxdy, b22e?a22x?e?bx2xdx= ?????0dx?2ye?yxdy, ab22由M判别法知?02ye∴?0b?y2x2dx在[a,b]内一致收敛, ???y2x2??e?a22x?e?bx2?y2x222xdx=?dy?2yea0bdx =?ady2?0e??d(xy)=?ba?dy=(b-a)?. basinbt?sinatdt=arctan- arctan. (p>0,b>a). ppt(2)利用例5结果:?0e?pt??sinxtdt=arctanx. ty??y?x1?cosxy?xsinxt?xsinxt(3)∵e=,∴edtdxedt. ?0?0?0x2xxsinxtsinxt由lime?x=t知, x=0不是e?x的瑕点,又 x?0xx??sinxt含参量非正常积分?0e?xdx在t∈[0,M]上一致收敛, ∴由(2)有 x当p=1, a=0, b=x时,有?0e?t??yy??11?cosxy2?xsinxtarctantdt===yarctany-ln(1+y). edtedx?0?0?02x2x?x 5、回答下列问题: (1)对极限lim1??00x?0?0???2xye?xy2dy能否运用极限与积分运算顺序的交换求解? 2(2)对?dy?(2y?2xy3)e?xydx能否运用积分顺序交换来求解? (3)对F(x)=?0x3e?xydy能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=?02xye?xydy=???2??2?1,x?0, ∴lim?F(x)=1,但 x?0?0,x?0???0x?0lim?2xye?xydy=0,即交换运算后不相等, x?0?022∴对极限lim?????2xye?xy2dy不能运用极限与积分运算顺序的交换求解. 注:?02xye?xydy=?0xe?xudu在[0,b]上不一致收敛,并不符合连续性定理的条件. (2)∵?0dy?0(2y?2xy)e31???xy2??dx=?2xye01?xy2??01dy=?0dy=0; 01???0dx?(2y?2xy)e01??13?xy2dy=?2??0ye2?xy210dx=?e?xdx=1; 0∴对?0dy?0(2y?2xy3)e?xydx不能运用积分顺序交换来求解. 注:?0(2y?2xy3)e?xydx=0且?M(2y?2xy3)e?xydx=-2Mye?My. 对ε0=1, ???13?xy2不论M多大,总有y0=∈[0,1],使得?M(2y?2xy)edx=2eM>1, M1??2??22∴?0(2y?2xy3)e?xydx在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=?0x3e?xydy=x, x∈(-∞,+∞),∴F’(x)≡1. 但 ??22?3?x2y24 xe=(3x-2xy)e?xy, 而当x=0时,?(3x2?2x4y)e?xydy=0. 0?x??2??2∴对F(x)=?0x3e?xydy不能运用积分与求导运算顺序交换来求解. 注:∵?0(3x?2xy)e24???x2y??2?1,x?0dy=?, 0,x?0?∴?0(3x?2xy)e24???x2ydy在[0,1]上不一致收敛,不符合可微性定理的条件. 6、应用:?0e(1)?0t2e?at??2???ax2π?2a (a>0),证明: dx=231n????π?2π(2n?1)!!??2n?at2?2?a;(2)?tedt=dt=a. n0422?1?证:(1)方法一:∵?0t2e?atdt在任何[c,d]上(c>0)一致收敛, ∴ ????dd???at22?at2?at2tedt. ==-edtedt???000dada??2331???2π?2πd?π?2?d???at2?=-a. ∴?e?axdx=a2. 又?0edt=?a?044da?da?2?方法二:?0te2???at21???at21??at2dt=-=-?tetde2a?02a?3??0??e0???at2dt??? π?21???at2=?0edt=a. 42a(2)方法一:∵?0t2ne?atdt在任何[c,d]上(c>0)一致收敛, dn∴ndadn又nda????2????0e?at2dt=???0dn?at2n??2n?at2edt=(-1)?tedt. 0dan?n???π?1?nπ(2n?1)!!??2?2??=(-1). aan?2?22???1??1???0e?at2dndt=nda∴?0t2ne?at2n??π(2n?1)!!???2?dt=. a22n??2方法二:记In=?0t2ne?atdt, n=0,1,2,…,(1)中已证 1??π(2?1?1)??(2?1?1)(2?k?1)?2?I1==I0. 可设Ik=Ik-1,则 a2a2a22?1?Ik+1=?0t2(k?1)e?atdt=- ??21??2k?1?at21?2k?1?at2=-tde?te?02a2a???0??e?atdt2k?1??0? 2??[2(k?1)?1](2k?1)2k?1??2k?at22(k?1)?1==I=Ik-1=…= tedtk (2a)22a?02a[2(k?1)?1]!!π[2(k?1)?1]!!?2I0=a. (2a)k?12(2a)k?11当n=k+1时,有In=?0t2ne?at 7、应用?0????2n??π(2n?1)!!??π(2k?1)!!?2?2?dt=a. a= 2(2a)n22n1?1???dx?dx=,求?0x2?a2x2?a22a??n?1. 解:记A=a, ∵?0dn∴ndAdn又ndA2 ??dx?x2?A?n?1在任何[c,d]上(c>0)一致收敛, ????0n??d??dxdx?1?n dx==(-1)n!???0x2?An?1. x2?A?0dAn?x2?A?????0dxdn???nπ(2n?1)!!?n?2A=. ??=(-1) 22nx2?AdAn?2A?1∴?0 ??dx?x2?A?n?1π(2n?1)!!?n?2π(2n?1)!!?2n?1Aa==. 2n!2n2(2n)!!18、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=?0f(x,y)dy在[a,b]上连续,证明:I(x)在[a,b]上一致收敛. 证:任取一个趋于的∞递增数列{An} (其中A1=c),考察级数 ????n?1?An?1Anf(x,y)dy=?un(x). n?1?∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴un(x)在[a,b]上非负连续. 由狄尼定理知,?un(x)在[a,b]上一致收敛,从而 n?1???n?1?An?1Anf(x,y)dy在[a,b]上一致收敛. 又I(x)=?????0f(x,y)dy在[a,b]上连续. ∴I(x)=?0f(x,y)dy=lim??An??n?1?An?1nf(x,y)dy[a,b]上一致收敛. 9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若?0F(x,y)dx在y∈[c,d] 上一致收敛,证明: ?????0f(x,y)dx在y∈[c,d] 上一致收敛且绝对收敛. ??证:∵?0F(x,y)dx在y∈[c,d] 上一致收敛,