第二章 有理数及其运算
10.科学记数法
一、学生起点状况分析
科学记数法是在学生学习了有理数的加、减、乘、除、乘方等内容之后,安排了一节与现实世界中的数据(尤其是大数)相关的数学内容,一方面让学生感受现实生活中的各种大数据,培养学生的数感。另一方面又通过对较大数学信息进行合理的处理的过程中,学会用简便的方法表示大数,同时为今后用科学记数法表示微观世界中较小的数据奠定基础。
二、教学任务分析
本节课学习内容是用科学记数法表示比10大的数。大数在实际生活中有着广泛的应用,因此在教学中利用多媒体、互联网等现代教育手段实施教学能突出本课特色,同时在课堂中引导学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,养成及时归纳总结的良好学习习惯。并为今后学习用科学记数法表示“小数”打下基础。
为此,本节课的教学目标是:
①理解科学记数法的意义,学会用科学记数法表示大数,对用科学记数法表示的数进行简单的运算;
②积累数学活动经验,发展数感;学会与人合作、与人交流。感受数学与生活的密切联系,开拓学生视野,激发学生学习数学的热情;
③感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性。
三、教学过程设计
本节课由六个教学环节组成。第一环节:自主收集,课前欣赏;第二环节:创设情景,导入问题;第三环节:合作交流,探索新知;第四环节:运用新知,当堂演练;第五环节:小组活动,自主检测;第六环节:延伸拓展,能力提升;第七环节:课堂小结,课后调查。 第一环节 自主收集,课前欣赏
内容:请学生课前收集生活中的大数据,可以来源于报刊网络,也可以自己调查或请父母帮助提供工作中涉及的大数据。通过收集你觉得身边的大数据多吗?这些大数据在读写上有什么困难没有?你觉得采取什么方法表示这些大数据比较合适?
下面是学生收集的部分资料的展示:
宜昌2011年种烟草种植情况:宜昌市现有4个种烟区域,分布在兴山、五峰、长阳和兴山,涉及烤烟、白肋烟和马里兰烟3个烟叶类型,常年种植烟叶11万亩,年产量30万担,其中马里兰烟是中国唯一的种植产区,世界最大产区。2011年,全市共种植烟叶120 000亩,其中烤烟50 000亩、白肋烟20 000亩、马里兰烟50 000亩。年产量30.8万担,其中烤烟15万担、白肋烟5.8万担、马里兰烟11万担。种烟农户14 103户,涉烟农民人数56 412人。年实现烟农收入2.2亿元,创税50 000 000元。烟农户平收入16000元,人平收入4000元。
三峡大坝发电情况调查:三峡电厂对工程枢纽的运行管理包含左、右岸两座电站。水电站厂房位于泄洪坝段左、右两侧,共装机26台,单机容量700 000千瓦,其中左岸电站14台、右岸电站12台,总容量18 200 000千瓦,年均发电量84 700 000 000度。 2003年7月10日和16日,三峡左岸电站首批发电的两台机组2号机和5号机分别正式移交三峡电厂运行管理;2003年共接管6台机组,创造了电厂半年内接机数量和接机总容量最大的世界纪录,当年发电量8 620 000 000度;2005年9月16日,左岸电站9号机组正式投入运行,三峡电厂提前一年接管左岸全部14台机组。
我国2011年银行贷款情况介绍:据了解,国家发改委向国务院上报的2011年新增贷款规模为XX00元。今年1--11月,全国各银行新增人民币贷款XX00元,接近全年的信贷目标XX00元。截至日前为止,我国已有深发展、华夏、民生、中行、建行、兴业、农业、浦发8家银行发布了2010年度业绩报告。按照各行公布的贷款增速,由大到小依次是:浦发银行以23.43%的增速领先,该行2010年度贷款总额为XX00元;其次是华夏银行,贷款增速22.7%,2010年度贷款总额为XX0元。兴业银行暂列第三,贷款增速21.77%,贷款总额XX0元。农行发放贷款和垫款总额XX00元,增加XX0元,增长19.8%。民生银行贷款和垫款总额10575.71亿元,比上年末增长19.77%。建行2010年客户贷款和垫款总额56691.28亿元,比上年底增长17.62%。中行贷款总额56606亿元,增幅15.28%。深发展贷款总额4073.91亿元、较年初增长13.32%。
全国中小学生人数:目前,我国中小学生在校生约为30000000人,中小学教职工约有10690000人
新闻报道:世界人口今天达到7000000000 本世纪末将突破XX ……
目的:让学生经历了一些数据收集体验活动,感受到了大数据在生活中的广泛应用
注意事项与效果:
由于这是学生在初中阶段的第一次数据收集工作,教师和学生简单讨论收集的方式方法,实际效果:学生通过课前收集,感受到问题的产生来源于生活实际问题,有了极大的探究热情和强烈的探索欲。
第二环节:创设情景,导入问题; 教师展示收集到的资料:
(1)2010年中国西南大旱是2010年发生于中国西南五省市云南、贵州、广西、四川及重庆的百年一遇的特大旱灾。一些地方的干旱天气可追溯至2009年7月。3月旱灾蔓延至广东、湖南等地以及东南亚湄公河流域。截至3月30日,中国耕地受旱面积116000000亩,其中作物受旱90680000亩,重旱28510000亩、干枯15150000亩,待播耕地缺水缺墒25260000亩;有24250000人、15840000头大牲畜因旱饮水困难。云南、贵州、广西、重庆、四川等西南受旱五省(区、市)累计投入抗旱资金4110000000元,投入劳力25260000人,投入抗旱机动设备1140000台套、运水车380000辆次,保障了当前19390000因旱饮水困难群众的基本生活用水。
问题:请多名学生依次读出材料中的各个数据。可能有的学生很顺利有的很困难。 目的:学生收集到的资料大数据往往已经进行了一些处理方便读写,(中国汉代人徐岳写了一部数学书,叫《数术记遗》,其中就有我们现在用的万,亿,亿亿,……之法;古希腊的著名数学家、科学家阿基米德也列出了一种大数记法,是“亿”进位,亿,亿亿等;在近代时期,科学界的努力使人们解决了“指数”和“方幂”的符号表示的问题,为新的大数记法打下工具基础)不一定能让学生体会到大数读写上的困难,产生强烈的求知欲。老师收集的材料一是数据多集中,二是做了一些处理,产生了一定的读写困难,让学生体会寻找简便方法表示大数的必要性。 注意事项与效果:
现场效果很好,部分学生通过读写材料中的数据,感受到大数据在读写过程中有一定的困难,还有部分学生感觉不是太困难,希望挑战更大难度的数据的读写。
(2)问题:以上材料中的数据,大家在读写过程中还不是太麻烦,那么如果碰到更大的数据了。
西南大旱是不是地球上的水不够多了,其实不是地球上的水是相当多的,只是分布不均。下
面我们看看地球上水资源的相关数据 注:一立方米的水的质量为一吨。 1km=1000m 、1km2=1000000m
2 、
1km3=1000000000m
3
大气中的水蒸气:13000km3 极地冰川中的水:29190000km3 地表水:230000km3 地下水:8595000km3 海水:1321890000km3
问题:如果把上面数据中的单位由大家不熟悉的立方千米转化为大家熟悉的吨,上图中的数据会变得更大,那么这么大的数据大家能不能方便的读写呢?
大气中的水蒸气:13000km3=XX000m3(吨) 极地冰川中的水:29190000km3=XX00000m3 (吨) 地表水:230000km3=XX0000m3 (吨) 地下水:8595000km3=XX00000m3 (吨) 海水:1321890000km3=XX00000000m3 (吨)
目的:第一个例子中的数据可能相当一部分同学会感到虽然麻烦但还是比较容易解决读写问题,所以顺势给出第二个例子,尤其是单位换算后的例子数据极其巨大,具有很强的视觉冲击力。学生马上就会强烈的体会到用简便方法表示大数的必要性。
注意事项与效果:巨大的数据让学生惊叹不已,深刻的感到用简便方法表示大数和超大数的必要性。完全达到预期目的。
第三环节:合作交流,探索新知
1. 10=__;10=____;10= 10n =___?
n2
4
7
?????10=100 … 0
n+1位 n个
?????2. 用10n的形式表示:100 000=__; 1 000 000=__;1 000 000 000=__. 3. 试一试:
太阳半径约700 000 千米: 700 000=7× =7×
2010年春运期间铁路运送旅客达210 000 000人次:210000000=2.1× =2.1×
板书:一般地,一个大于10的数可以表示成a×10的形式,其中1≤a<10, n是正整数,这种记数方法叫做科学记数法.
目的:从一系列的数据中体会大数“读”“写”的困难,从而导出课题。通过系列问题帮助学生对幂的意义进行回忆,弄清指数与其结果中零的个数的关系,使学生对科学记数法有初步的理解,并体会用幂的形式表示数的简便性从而导出用科学记数法表示大数。 注意事项与效果:在教师的引导下,学生通过对的积极探索交流,学会了从特殊到一般转化问题的方法,增强了归纳慨括的能力。
问题:小组讨论:科学记数法中的a怎样确定, n怎样确定?
讨论结束后回到例子一(西南大旱):请学生依次确定材料中各个数据如果用科学记数法表示时,a是多少?n怎么确定?
归纳总结:科学记数法中 10的指数n值的确定法: ①比原整数位数少1(当原数的绝对值≥10时); ②由小数点的移动位数来确定。
目的:通过学生的自主探索和合作交流归纳用科学记数法表示大数的步骤,培养学生的逆向思维能力。学生通过讨论交流得出用科学记数法表示一个大数的步骤,先把原数的小数点往左移到最高位数的右下方,确定a的值;再数出小数点的位置向左移动了多少位或原整数位数少1的值,n的值就是多少,从而确定n的值。
注意事项与效果:本环节要留给给学生自主探究的时间和空间,达到了问题由学生自己解决的目的。现场效果学生体会到了解决问题的乐趣,享受到了成功的喜悦,效果非常好。
问题:请同学们用科学记数法表示我们第二个例子中的大数。 第四环节:运用新知,当堂演练 挑战一:用科学记数法表示下列各数
①32 000 ②384 000 000 ③94100.00 ④-810 000 ⑤10 000 000 ⑥-223 000 ⑦二千三百四十六万
⑧一亿五千万
n