浙江专升本—高等数学复习公式
导数公式:
(tgx)??sec2x(ctgx)???csc2x(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna(logax)??基本积分表:
(arcsinx)??11xlna1?x21(arccosx)???1?x21(arctgx)??1?x21(arcctgx)???1?x2?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?cos2x??secxdx?tgx?Cdx2?sin2x??cscxdx??ctgx?C?secx?tgxdx?secx?C?cscx?ctgxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?0022n?1In?2nx2a2222?x?adx?2x?a?2ln(x?x?a)?Cx2a222222x?adx?x?a?lnx?x?a?C?22x2a2x222a?xdx?a?x?arcsin?C?22a三角函数的有理式积分:
2u1?u2x2dusinx?, cosx?, u?tg, dx?
1?u21?u221?u2
一些初等函数: 两个重要极限:
ex?e?x双曲正弦:shx?2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??chxex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?x三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sinx lim?1x?0x
1
lim(1?)x?e?2.718281828459045...x?? x
sin -sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα cos cosα sinα -sinα -cosα -cosα -sinα sinα cosα cosα tg -tgα ctgα -ctgα -tgα tgα ctgα -ctgα -tgα tgα ctg -ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差角公式: ·和差化积公式:
??????sin(???)?sin?cos??cos?sin?sin??sin??2sincos22cos(???)?cos?cos??sin?sin???????sin??sin??2cossintg??tg?22tg(???)?1?tg??tg???????cos??cos??2coscosctg??ctg??122ctg(???)?ctg??ctg???????cos??cos??2sinsin22
·倍角公式:
sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?ctg2??1ctg2??2ctg?2tg?tg2??1?tg2?
·半角公式:
sintgsin3??3sin??4sin3?cos3??4cos3??3cos?3tg??tg3?tg3??1?3tg2??2????1?cos??1?cos? cos??2221?cos?1?cos?sin??1?cos?1?cos?sin??? ctg????1?cos?sin?1?cos?21?cos?sin?1?cos??2
·正弦定理:
abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC·反三角函数性质:arcsinx??2?arccosx arctgx??2?arcctgx
高阶导数公式——莱布尼兹(Leibniz)公式:
(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!
中值定理与导数应用:
拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)
当F(x)?x时,柯西中值定理就是拉格朗日中值定理。曲率:
弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d?M点的曲率:K?lim??.
23?s?0?sds(1?y?)直线:K?0;1半径为a的圆:K?.a
定积分的近似计算:
b矩形法:?f(x)?abb?a(y0?y1???yn?1)nb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n
梯形法:?f(x)?ab抛物线法:?f(x)?a定积分应用相关公式:
功:W?F?s水压力:F?p?Amm引力:F?k122,k为引力系数
rb1函数的平均值:y?f(x)dx?b?aa1均方根:f2(t)dt?b?aab空间解析几何和向量代数:
空间2点的距离:d?M1M2?(x2?x1)2?(y2?y1)2?(z2?z1)2向量在轴上的投影:PrjuAB?AB?cos?,?是AB与u轴的夹角。????Prju(a1?a2)?Prja1?Prja2????a?b?a?bcos??axbx?ayby?azbz,是一个数量,两向量之间的夹角:cos??i???c?a?b?axbxjaybyaxbx?ayby?azbzax?ay?az?bx?by?bz222222k??????az,c?a?bsin?.例:线速度:v?w?r.bzaybycyaz???bz?a?b?ccos?,?为锐角时, czax??????向量的混合积:[abc]?(a?b)?c?bxcx代表平行六面体的体积。
平面的方程:1、点法式:A(x?x0)?B(y?y0)?C(z?z0)?0,其中n?{A,B,C},M0(x0,y0,z0)2、一般方程:Ax?By?Cz?D?0xyz3、截距世方程:???1abc平面外任意一点到该平面的距离:d?Ax0?By0?Cz0?DA2?B2?C2
?x?x0?mtx?xy?y0z?z0?空间直线的方程:0???t,其中s?{m,n,p};参数方程:?y?y0?ntmnp?z?z?pt0?常数项级数:
1?qn等比数列:1?q?q???q?1?q(n?1)n 等差数列:1?2?3???n?2111调和级数:1?????是发散的23n2n?1级数审敛法:
1、正项级数的审敛法——根植审敛法(柯西判别法):???1时,级数收敛?设:??limnun,则???1时,级数发散n?????1时,不确定?2、比值审敛法:???1时,级数收敛Un?1?设:??lim,则???1时,级数发散n??Un???1时,不确定?3、定义法:sn?u1?u2???un;limsn存在,则收敛;否则发散。n??
交错级数u1?u2?u3?u4??(或?u1?u2?u3??,un?0)的审敛法——莱布尼兹定理:? ?un?un?1如果交错级数满足s?u1,其余项rn的绝对值rn?un?1。?limu?0,那么级数收敛且其和n??n??绝对收敛与条件收敛: