2 )资料分类:以少数代表点来代表特点类别的资料,可以降低资料量及计算量; 2.实现
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配: 指定聚类
即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。 修改聚类中心
优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K< ① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 K,例如 ISODATA 算法。关于 K-means 算法中聚类数目K 值的确定在文献中,是根据方差分析理论,应用混合 F 统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类。而文献中使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 ② 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好, 可能无法得到有效的聚类结果,这也成为 K-means算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法(GA),例如文献 中采用遗传算法(GA)进行初始化,以内部聚类准则作为评价指标。 ③ 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。所以需要对算 法的时间复杂度进行分析、改进,提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。而在文献 中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。 2.BIRCH BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的 表示可用对应的聚类特征,而不必用具体的一组点来表示。它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。BIRCH算法通过聚类特征可以方便地 进行中心、半径、直径及类内、类间距离的运算。算法的聚类特征树是一个具有两个参数分枝因子B和类直径T的高度平衡树。分枝因子规定了树的每个节点子女的 最多个数,而类直径体现了对一类点的直径大小的限制即这些点在多大范围内可以聚为一类,非叶子结点为它的子女的最大关键字,可以根据这些关键字进行插人索 引,它总结了其子女的信息。 聚类特征树可以动态构造,因此不要求所有数据读人内存,而可以在外存上逐个读人。新的数据项总是插人到树中与该数 据距离最近的叶子中。如果插人后使得该叶子的直径大于类直径T,则把该叶子节点分裂。其它叶子结点也需要检查是否超过分枝因子来判断其分裂与否,直至该数 据插入到叶子中,并且满足不超过类直径,而每个非叶子节点的子女个数不大于分枝因子。算法还可以通过改变类直径修改特征树大小,控制其占内存容量。 BIRCH算法通过一次扫描就可以进行较好的聚类,由此可见,该算法适合于大数据量。对于给定的M兆内存空间,其空间复杂度为O(M),时间间复杂度为 O(dNBlnB(M/P)).其中d为维数,N为节点数,P为内存页的大小,B为由P决定的分枝因子。I/O花费与数据量成线性关系。BIRCH算法只 适用于类的分布呈凸形及球形的情况,并且由于BIRCH算法需提供正确的聚类个数和簇直径限制,对不可视的高维数据不可行。 3.DBSCAN DBSCAN算法即基于密度的聚类算法。该算法利用类的密度连通性可以快速发现任意形状的类。其基本思想 是:对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目。在DBSCAN算法中,发现一个类的过程是基于这样的事实:一 个类能够被其中的任意一个核心对象所确定。为了发现一个类,DBSCAN先从对象集D中找到任意一对象P,并查找D中关于关径Eps和最小对象数 Minpts的从P密度可达的所有对象。如果P是核心对象,即半径为Eps的P的邻域中包含的对象不少于Minpts,则根据算法,可以找到一个关于参数 Eps和Minpts的类。如果P是一个边界点,则半径为Eps的P邻域包含的对象少于Minpts,P被暂时标注为噪声点。然后,DBSCAN处理D中 的下一个对象。 密度可达对象的获取是通过不断执行区域查询来实现的。一个区域查询返回指定区域中的所有对象。为了有效地执 行区域查询,DBSCAN算法使用了空间查询R-树结构。在进行聚类前,必须建立针对所有数据的R*-树。另外,DBSCAN要求用户指定一个全局参数 Eps(为了减少计算量,预先确定参数Minpts)。为了确定取值,DBSCAN计算任意对象与它的第k个最临近的对象之间的距离。然后,根据求得的距 离由小到大排序,并绘出排序后的图,称做k-dist图。k-dist图中的横坐标表示数据对象与它的第k个最近的对象间的距离;纵坐标为对应于某一k- dist距离值的数据对象的个数。R*-树的建立和k-dist图的绘制非常消耗时间。此外,为了得到较好的聚类结果,用户必须根据k-dist图,通过 试探选定一个比较合适的Eps值。DBSCAN算法不进行任何的预处理而直接对整个数据集进行聚类操作。当数据量非常大时,就必须有大内存量支持,I/O 消耗也非常大。其时间复杂度为O(nlogn)(n为数据量),聚类过程的大部分时间用在区域查询操作上。DBSCAN算法对参数Eps及Minpts非常敏感,且这两个参数很难确定。 4.OPTICS 1 什么是OPTICS算法 在前面介绍的DBSCAN算法中,有两个初始参数E(邻域半径)和minPts(E邻域最小点数)需要用户手动设置输入,并且聚类的类簇结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果,其实这也是大多数其他需要初始化参数聚类算法的弊端。 为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure)。OPTICS并 不显示的产生结果类簇,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度 的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。 2 OPTICS两个概念 核心距离: 对象p的核心距离是指是p成为核心对象的最小E’。如果p不是核心对象,那么p的核心距离没有任何意义。 可达距离: 对象q到对象p的可达距离是指p的核心距离和p与q之间欧几里得距离之间的较大值。如果p不是核心对象,p和q之间的可达距离没有意义。 例如:假设邻域半径E=2, minPts=3,存在点A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2) 点A为核心对象,在A的E领域中有点{A,B,C,D,E,F},其中A的核心距离为E’=1,因为在点A的E’邻域中有点{A,B,D,E}>3; 点F到核心对象点A的可达距离为 ,因为A到F的欧几里得距离 ,大于点A的核心距离1. 算法 算法效率 适合的数据类型 发现的聚类类型 对脏数据或异常数据的敏感性 对数据输入顺序的敏感性 BIRCH 高 数值 凸形或球形 不敏感 不太敏感 DBSCAN 一般 数值 任意形状 敏感 敏感 3.在下面的数据库中,给出了每个顾客在一段时间内的购物记录,在进行序列模式分析时,序列规则的置信度和支持度是什么? 支持度(Support)的公式是:Support(A->B)=P(A U B)。支持度揭示了A与B同时出现的概率。如果A与B同时出现的概率小,说明A与B的关系不大;如果A与B同时出现的非常频繁,则说明A与B总是相关的。 置信度(Confidence)的公式式:Confidence(A->B)=P(A | B)。置信度揭示了A出现时,B是否也会出现或有多大概率出现。如果置信度度为100%,则A和B可以捆绑销售了。如果置信度太低,则说明A的出现与B是否出现关系不大。 示例:某销售手机的商场中,70%的手机销售中包含充电器的销售,而在所有交易中56%的销售同时包含手机和充电器。则在此例中,支持度为56%,置信度为70%。 4.在下面的事务数据库中,关联规则的置信度和支持度是什么?关联规则的置信度和支持度又是什么?如果min sup = 60%,min conf = 80%,则频繁项集有哪些?