26.设f?x?在?0,??上具有二阶连续导数,f?????3且??f?x??f???x??cosxdx?2,求0
?f??0?.第6页共7页第7页共7页2019年浙江普通专升本《高等数学》全真模拟预测卷(一)
一、选择题1.C1?1?
解析:由于是选择题,可以用图形法解决,令?(x)?x(x?1),则?(x)??x???,2?4?
是以直线x?
2
1?11?
为对称轴,顶点坐标为?,??,开口向上的一条抛物线,与x轴相交的2?24?
两点坐标为?0,0?,?1,0?,y?f(x)??(x)的图形如图.点x?0是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.2.C解析:因为lim
x?11?x2(1?x)1?x
?lim
1?x1
?,故选C.x?12(1?x)2
3.D解析:利用被积函数的奇偶性,当积分区间关于原点对称,被积函数为奇函数时,积分为0,当被积函数为偶函数时,可以化为二倍的半区间上的积分.所以有原式22xxx
??dx?2dx?2?02?x2?02?x2dx?22?x2
2
??
2
0
12
dx2?x2
2
20
?ln(2?x)?ln6?ln2?ln3.
4.C(n?1)3
?n?1n31(n?1)312解析:因lim?lim??1,所以?n收敛,故选C.33n??n??n2n2n?122ny5.A解析:平面区域的面积(e,1)eS?
?
e1lnxdx?(xlnx?x)|?1.1y=lnxexO1二、填空题6.?2?x?4解析:?1?7.e
?0.5
x?1
?1,16?x2?0?3??2?x?4
??2?x?4?
?4?x?4?
1n?1?n?2解析:原式=lim[1?]n???2n?1?n8.dy?f'(sinx)cosxdx解析:y'?f'(sinx)cosx
n?1?n?(?0.5)
n?1?n?e?0.5
(lnx?1)20139.?C
2013解析:?
(lnx?1)2012
dx?x?x
?
(lnx?1)
2012
(lnx?1)2013
d(lnx?1)??C.201310.?xe
?e?x?c
解析:xf'(x)dx?xdf(x)?xf(x)?
???
f(x)dx??xe?x?e?x?c
11.y?x?
3.2
x??
解析:由求斜渐近线公式y?ax?b(其中a?lim
f(x)
,b?lim[f(x)?ax],得:x??xa?lim
x???
f(x)(1?x)?lim?1,x???xxx(1?x)?x
x323232b?lim?f(x)?ax??lim
x???x????
3,2于是所求斜渐近线方程为y?x?12.?.2
223.2
方法1:作积分变量变换,令x?sect,则x?1?sect?1?tant,dx?dsect?secttantdt,t:0?代入原式:2?,2
?1??dxxx?12x?sect??20sect?tant?dt??2dt?.0sect?tant2
?方法2:令x?
111
,则dx?d??2dt,t:1?0,代入原式:tttdx?113.2ex
??1x?txx2?1?101t11(?2)dt??dt?arcsint
02t11?t?1t21?0?.2
dlnx2t?1lnx2?12e?e?2ex解析:因为?0dxx14.[?3,7)
(x?2)n?1
n?1x?2u(x)nn?1?lim解析:由limn?1?lim5x?2??1.nn??u(x)n??n??(x?2)55n?1n
5nn得?3?x?7,级数收敛;?
(?1)n1
当x??3时,级数为?收敛;当x?7时,级数为?发散;nnn?1n?1
?
故收敛域为[?3,7).15.e
?2
e2x
解析:因为y??x
2x
?2lnx?2?,令y??0得驻点为x?
2
2x
1.e2??121??
又y???x?2lnx?2??x?,得y?????2ee?0,x?e?2
?12x
故x?为y?x的极小值点,此时y?ee,e又当x??0,?时,y??x??0;x??,1?时,y??x??0,??
1?e??1??e?
故y在?0,?上递减,在?,1?上递增.2x1x2??
1?e??1??e?
而y?1??1,y??0??limx?
x?0
2x
?lim?e
x?0
2xlnx
?e
2lnx
limx?0?1x?e
x?0??
lim
?e
x?0?
lim??2x??1,
2019年浙江普通专升本数学全真模拟卷一~卷六(附答案)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)