.
全数字锁相环的设计
锁相环(PLL)技术在众多领域得到了广泛的应用。如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的PLL相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,DPLL必然会在其中得到更为广泛的应用。
这里介绍一种采用VERILOG硬件描述语言设计DPLL的方案。
DPLL结构及工作原理
一阶DPLL的基本结构如图1所示。主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器四部分构成。K变模计数器和脉冲加减电路的时钟分别为Mfc和2Nfc。这里fc是环路中心频率,一般情况下M和N都是2的整数幂。本设计中两个时钟使用相同的系统时钟信号。
图1 数字锁相环基本结构图
鉴相器
常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD),本设计中采用异或门(XOR)鉴相器。异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差Фe=Фin-Фout,并输出误差信号Se作为K变模可逆计数器的计数方向信号。环路锁定时,Se为一占空比50%的方波,此时的绝对相为差为90°。因此异或门鉴相器相位差极限为±90°。异或门鉴相器工作波形如图2所示。
.
.
图2 异或门鉴相器在环路锁定及极限相位差下的波形
K变模可逆计数器
K变模可逆计数器消除了鉴相器输出的相位差信号Se中的高频成分,保证环路的性能稳定。K变模可逆计数器根据相差信号Se来进行加减运算。当Se为低电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号CARRY给脉冲加减电路;当Se为高电平时,计数器进行减运算,如果结果为零,则输出一个借位脉冲信号BORROW给脉冲加减电路。
脉冲加减电路
脉冲加减电路实现了对输入信号频率和相位的跟踪和调整,最终使输出信号锁定在输入信号的频率和信号上,工作波形如图3所示。
图3 脉冲加减电路工作波形
除N计数器
.
.
除N计数器对脉冲加减电路的输出IDOUT再进行N分频,得到整个环路的输出信号Fout。同时,因为fc=IDCLOCK/2N,因此通过改变分频值N可以得到不同的环路中心频率fc。
DPLL部件的设计实现
了解了DPLL的工作原理,我们就可以据此对DPLL的各部件进行设计。DPLL的四个主要部件中,异或门鉴相器和除N计数器的设计比较简单:异或门鉴相器就是一个异或门;除N计数器则是一个简单的N分频器。下面主要介绍K变模可逆计数器和脉冲加减电路的设计实现。
K变模可逆计数器的设计实现
K变模可逆计数器模块中使用了一个可逆计数器Count,当鉴相器的输出信号dnup为低时,进行加法运算,达到预设模值则输出进位脉冲CARRY;为高时,进行减法运算,为零时,输出借位脉冲BORROW。Count的模值Ktop由输入信号Kmode预设,一般为2的整数幂,这里模值的变化范围是23-29。模值的大小决定了DPLL的跟踪步长,模值越大,跟踪步长越小,锁定时的相位误差越小,但捕获时间越长;模值越小,跟踪步长越大,锁定时的相位误差越大,但捕获时间越短。
K变模可逆计数器的VERILOG设计代码如下(其中作了部分注释,用斜体表示):
module KCounter(Kclock,reset,dnup,enable, Kmode,carry,borrow);
input Kclock; /*系统时钟信号*/ input reset; /*全局复位信号*/
input dnup; /*鉴相器输出的加减控制信号*/ input enable; /*可逆计数器计数允许信号*/ input [2:0]Kmode; /*计数器模值设置信号*/ output carry; /*进位脉冲输出信号*/ output borrow; /*借位脉冲输出信号*/ reg [8:0]Count; /*可逆计数器*/ reg [8:0]Ktop; /*预设模值寄存器*/
/*根据计数器模值设置信号Kmode来设置预设模值寄存器的值*/ always @(Kmode) begin
case(Kmode) 3'b001:Ktop<=7; 3'b010:Ktop<=15; 3'b011:Ktop<=31; 3'b100:Ktop<=63; 3'b101:Ktop<=127; 3'b110:Ktop<=255;
.
.
3'b111:Ktop<=511; default:Ktop<=15; endcase end
/*根据鉴相器输出的加减控制信号dnup进行可逆计数器的加减运算*/ always @(posedge Kclock or posedge reset) begin if(reset) Count<=0; else if(enable) begin if(!dnup) begin
if(Count==Ktop) Count<=0; else
Count<=Count+1; end else begin
if(Count==0) Count<=Ktop; else
Count<=Count-1; end end end
/*输出进位脉冲carry和借位脉冲borrow*/
assign carry=enable&(!dnup) &(Count==Ktop); assign borrow=enable&dnup& (Count==0); endmodule
脉冲加减电路的设计实现
脉冲加减电路完成环路的频率和相位调整,可以称之为数控振荡器。当没有进位/借位脉冲信号时,它把外部参考时钟进行二分频;当有进位脉冲信号CARRY时,则在输出的二分频信号中插入半个脉冲,以提高输出信号的频率;当有借位脉冲信号BORROW时,则在输出的二分频信号中减去半个脉冲,以降低输出信号的频率。VERILOG设计代码如下:
module IDCounter(IDclock,reset,inc,dec,IDout); input IDclock; /*系统时钟信号*/ input reset; /*全局复位信号*/ input inc; /*脉冲加入信号*/ input dec; /*脉冲扣除信号*/
.
.
output IDout; /*调整后的输出信号*/ wire Q1, Qn1, Q2, Qn2, Q3, Qn3; wire Q4, Qn4, Q5, Qn5, Q6, Qn6; wire Q7, Qn7, Q8, Qn8, Q9, Qn9; wire D7, D8;
FFD FFD1(IDclock, reset, inc, Q1, Qn1); FFD FFD2(IDclock, reset, dec, Q2, Qn2); FFD FFD3(IDclock, reset, Q1, Q3, Qn3); FFD FFD4(IDclock, reset, Q2, Q4, Qn4); FFD FFD5(IDclock, reset, Q3, Q5,Qn5); FFD FFD6(IDclock, reset, Q4, Q6,Qn6);
assign D7=((Q9 & Qn1 & Q3) | (Q9 & Q5 & Qn3)); assign D8=((Qn9 & Qn2 & Q4) | (Qn9 & Q6 & Qn4)); FFD FFD7(IDclock, reset, D7, Q7, Qn7 ); FFD FFD8(IDclock, reset, D8, Q8, Qn8);
JK FFJK(IDclock, reset, Qn7, Qn8, Q9, Qn9); assign IDout = (!Idclock)|Q9; endmodule
其中,FFD为D触发器,JK为JK触发器。
当环路的四个主要部件全部设计完毕,我们就可以将他们连接成为一个完整的DPLL,进行仿真、综合、验证功能的正确性。
DPLL的FPGA实现
本设计中的一阶DPLL使用XILINX公司的FOUNDATION4.1软件进行设计综合,采用XILINX的SPARTAN2系列的XC2S15 FPGA器件实现,并使用Modelsim5.5d软件进行了仿真。结果表明:本设计中DPLL时钟可达到120MHz,性能较高;而仅使用了87个LUT和26个触发器,占用资源很少。下面给出详细描述DPLL的工作过程。
(1) 当环路失锁时,异或门鉴相器比较输入信号(DATAIN)和输出信号(CLOCKOUT)之间的相位差异,并产生K变模可逆计数器的计数方向控制信号(DNUP); (2) K变模可逆计数器根据计数方向控制信号(DNUP)调整计数值,DNUP为高进行减计数,并当计数值到达0时,输出借位脉冲信号(BORROW);为低进行加计数,并当计数值达到预设的K模值时,输出进位脉冲信号(CARRY); (3) 脉冲加减电路则根据进位脉冲信号(CARRY)和借位脉冲信号(BORROW)在电路输出信号(IDOUT)中进行脉冲的增加和扣除操作,来调整输出信号的频率;
(4) 重复上面的调整过程,当环路进入锁定状态时,异或门鉴相器的输出DNUP为一占空比50%的方波,而K变模可逆计数器则周期性地产生进位脉冲输出
.