好文档 - 专业文书写作范文服务资料分享网站

七年级下册数学知识点归纳:第五章相交线与平行线

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版七年级下册数学知识点归纳

第五章 相交线与平行线

5.1 相交线

一、相交线 两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。

③对顶角相等。

二、垂线

1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角 两条直线被第三条直线所

截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。 2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

5.2 平行线及其判定

(一) 平行线

1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c

(二)平行线的判定:

1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)

2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)

3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)

推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

5.3 平行线的性质

(一)平行线的性质

1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等) 2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等)

(二)命题、定理、证明

1.命题的概念:判断一件事情的语句,叫做命题。 2.命题的组成:每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。 3.真命题:正确的命题,题设成立,结论一定成立。 4.假命题:错误的命题,题设成立,不能保证结论一定成立。 5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据) 6.证明:推理的过程叫做证明。

5.4 平移

1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。 2.平移的性质

①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

七年级下册数学知识点归纳:第五章相交线与平行线

人教版七年级下册数学知识点归纳第五章相交线与平行线5.1相交线一、相交线两条直线相交,形成4个角。1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。①邻补
推荐度:
点击下载文档文档为doc格式
6d55291w6h7e16g2f5026bod04q32p00oz0
领取福利

微信扫码领取福利

微信扫码分享