1.(9分)如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标.
2.(9分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
3.(9分)如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.
(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB′O≌△CDO.
4.(9分)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.
(1)求证:△AMD≌△BME;
(2)若N是CD的中点,且MN=5,BE=2,求BC的长.
5.(9分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形; ②当AM的值为 时,四边形AMDN是菱形.
6.(9分)如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF; (2)填空:
①当t为 s时,四边形ACFE是菱形;
②当t为 s时,以A、F、C、E为顶点的四边形是直角梯形.
7.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.
(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形; (2)填空:
①当DP= cm时,四边形AOBD是菱形; ②当DP= cm时,四边形AOBP是正方形.
8.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO. (1)求证:△CDP≌△POB; (2)填空:
①若AB=4,则四边形AOPD的最大面积为 ;
②连接OD,当∠PBA的度数为 时,四边形BPDO是菱形.
9.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E. (1)求证:MD=ME; (2)填空:
①若AB=6,当AD=2DM时,DE= ;
②连接OD,OE,当∠A的度数为 时,四边形ODME是菱形.
10.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD. (1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.
11.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F. (1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空: ①当∠D的度数为 时,四边形ECFG为菱形; ②当∠D的度数为 时,四边形ECOG为正方形.