好文档 - 专业文书写作范文服务资料分享网站

人教版小升初数学知识点归纳

天下 分享 时间: 加入收藏 我要投稿 点赞

数和数的运算

一 概念

(一)整数 1 整数的意义

自然数和0都是整数。 整数分为正整数和负整数。

整数的个数是无限的,没有最小的整数,也没有最大的整数。 2 自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3 正数和负数

描述具有相反意义的量,可以用正、负数。

0既不是正数,也不是负数。 4计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

5数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

例如:因为35能被7整除,所以35是7的倍数,7是35的约数。

★ 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

★ 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

★ 个位上是0、2、4、6、8的数,都能被2整除, 例如:202、480、304,都能被2整除。。 ★ 个位上是0或5的数,都能被5整除,

例如:5、30、405都能被5整除。。

★ 一个数的各位上的数的和能被3整除,这个数就能被3整除, 例如:12、108、204都能被3整除。

★ 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 ★ 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、12344都能被8整除,1125、13375、5000都能被125整除。

§ 奇数与偶数

能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

§ 质数与合数

★一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、

53、59、61、67、71、73、79、83、89、97。

★ 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,

例如 4、6、8、9、12都是合数。

★ 1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

★ 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 ★ 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

★ 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最

大公约数,

例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

★ 公约数只有1的两个数,叫做互质数。其中:

1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。(即质数与合数之间有可能互质,也可能不互质)

两个合数的公约数只有1时,这两个合数互质。 (即两个有可能互质,也可能不互质)

★ 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最

小公倍数,

例如:2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 ……

其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

★ 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数 1 小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

2.循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

(三)分数 1 分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 分数的基本性质

分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。 运用分数的基本性质可以进行通分或约分。

(四)百分数

1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。 百分数通常用\来表示。百分号是表示百分数的符号。

二 方法

(一)数的读法和写法

1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较

(1). 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

(2). 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

(3). 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。\\

三 性质和规律

(一)商不变的规律

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍…… 3. 小数点向左移或者向右移位数不够时,要用“0\补足位。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。 3. 被除数相当于分子,除数相当于分母。

四 运算的意义 (一)整数四则运算 1整数加法:

把两个数合并成一个数的运算叫做加法。

人教版小升初数学知识点归纳

数和数的运算一概念(一)整数1整数的意义自然数和0都是整数。整数分为正整数和负整数。整数的个数是无限的,没有最小的整数,也没有最大的整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3正数
推荐度:
点击下载文档文档为doc格式
6bzj08nu4i6ksx797jw59jajr88ky400wyi
领取福利

微信扫码领取福利

微信扫码分享