车辆非线性主动悬架系统自适应反推控制器设计
根据“中国制造2025”的发展要求,汽车领域不断飞速发展,人们对于车辆舒适度和安全性要求不断提高,车体悬架系统是位于车辆底盘的重要系统之一,用于支撑车体重量、吸收和消除振动,并决定和影响着驾乘人员的行驶平顺性和操纵稳定性。主动悬架系统是一种可调系统,并且可以根据车辆行驶时不同的环境变化,实时的改善车辆系统的性能,所以众多学者对其进行了广泛研究。主动悬架系统在研究中应充分考虑其组成元件弹簧和阻尼的非线性,且车辆在不同环境和不同工况行驶过程中,其车辆悬架系统参数也会发生改变,在控制器设计过程中这种系统的非性性和参数变化会严重影响主动悬架系统的稳定性和鲁棒性。而自适应反推控制方法可有效解决上述系统干扰问题,该方法根据外界干扰和控制模型的变化设计相应的自适应调节规律,实时抑制外界不利条件对系统的干扰,实现精确控制,有效提高系统的鲁棒性。基于此,本文基于自适应反推理论,设计了不同类型的控制器以提高悬架系统性能。研究内容主要分为以下几个方面:(1)采集路面信息并构建三种路面激励模型,进而建立非线性被动悬架系统模型。通过仿真实验得到车辆非线性被动悬架系统的各项性能指标以及输出曲线。(2)针对非线性主动悬架系统,提出两种基于Lyapunov函数的自适应反推控制方法。首先建立不确定性的1/2车辆非线性主动悬架系统模型,并引入虚拟控制函数,以控制车辆的垂向和俯仰运动,同时设计自适应控制律,调节系统中不确定性的影响,最终得到两种主动控制力。(3)引入可调的理想参考轨迹曲线,建立误差跟踪系统,
设计一种高精度的自适应反推控制律,使主动悬架系统的状态变量可以跟踪给定的参考轨迹,并结合Lyapunov稳定性理论,证明悬架系统的全局稳定性,同时,对轮胎子系统进行零动态稳定性分析,以保证各安全性能指标均在给定界限范围之内。(4)考虑输入时滞对悬架系统的影响,建立不确定非线性的1/4车辆主动悬架模型,设计一种新的基于二次Lynapunov函数的自适应反推控制器,同时根据线性化理论和振动原理,给出了一种临界时滞的求解方法,这种方法可根据控制器的输入不同,求解出相应的控制器临界时滞,对于大多数闭环系统,均可用该方法对临界时滞进行求解。