圆锥曲线18
x2y221.如图,椭圆C0:2?2?1(a?b?0,a,b为常数),动圆C1:x2?y2?t12,b?t1?a。
ab点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点。 (Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
////222 (Ⅱ)设动圆C2:x?y?t2与C0相交于A,B,C,D四点,其中b?t2?a, 2t1?t2。若矩形ABCD与矩形A/B/C/D/的面积相等,证明:t12?t2为定值。
【答案】
22.(本小题满分13分)
设A是单位圆x2?y2?1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x 轴的交点,点M在直线l上,且满足|DM|?m|DA|(m?0,且m?1). 当点A在圆上运动时,记点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上
的射影为点N,直线QN交曲线C于另一点H. 是否存在m,使得对任意的k?0,都有PQ?PH?若存在,求m的值;若不存在,请说明理由.
【答案】(Ⅰ)如图1,设M(x,y),A(x0,y0),则由|DM|?m|DA|(m?0,且m?1),
可得x?x0,|y|?m|y0|,所以x0?x,|y0|?1|y|. ① m因为A点在单位圆上运动,所以x02?y02?1. ②
y2将①式代入②式即得所求曲线C的方程为x?2?1 (m?0,且m?1).
m2因为m?(0,1)U(1,??),所以
当0?m?1时,曲线C是焦点在x轴上的椭圆, 两焦点坐标分别为(?1?m2,0),(1?m2,0); 当m?1时,曲线C是焦点在y轴上的椭圆, 两焦点坐标分别为(0,?m2?1),(0,
(Ⅱ)解法1:如图2、3,?k?0,设P(x1,kx1),H(x2,y2),则Q(?x1,?kx1),N(0,kx1),
直线QN的方程为y?2kx?kx1,将其代入椭圆C的方程并整理可得
m2?1).
(m2?4k2)x2?4k2x1x?k2x12?m2?0.
依题意可知此方程的两根为?x1,x2,于是由韦达定理可得 4k2x1m2x1,即x2?2. ?x1?x2??2m?4k2m?4k2
解法2:如图2、3,?x1?(0,1),设P(x1,y1),H(x2,y2),则Q(?x1,?y1),N(0,y1),
2222??mx1?y1?m,因为P,H两点在椭圆C上,所以?22 两式相减可得 22??mx2?y2?m,m2(x12?x22)?(y12?y22)?0. ③
依题意,由点P在第一象限可知,点H也在第一象限,且P,H不重合, 故(x1?x2)(x1?x2)?0. 于是由③式可得
(y1?y2)(y1?y2)??m2. ④
(x1?x2)(x1?x2)又Q,N,H三点共线,所以kQN?kQH,即于是由④式可得kPQ?kPH2y1y1?y2. ?x1x1?x2y1y1?y21(y1?y2)(y1?y2)m2. ??????x1x1?x22(x1?x2)(x1?x2)2而PQ?PH等价于kPQ?kPHm2??1,即???1,又m?0,得m?2,
22y2故存在m?2,使得在其对应的椭圆x??1上,对任意的k?0,都有PQ?PH.
223.(本小题共14分)
uuuruuur欲证A,G,N三点共线,只需证AG,AN共线
即
3xM(xNk?2)??xN成立,化简得:(3k?k)xMxN??6(xM?xN)
xMk?6将①②代入易知等式成立,则A,G,N三点共线得证。
24.(本小题满分14分)
x2y22在平面直角坐标系xOy中,已知椭圆C1:2?2?1(a?b?0)的离心率e=,且椭圆C
3ab上的点到Q(0,2)的距离的最大值为3. (1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x+y=1相交于不同的
2
2
两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.
【答案】本题是一道综合性的题目,考查直线、圆与圆锥曲线的问题,涉及到最值与探索性问题,意在考查学生的综合分析问题与运算求解的能力。