2017—2018学年度第二学期初三数学中考复习
专题十:动点问题的常见题型和解题方法(提高)
动点问题是近年来中考的的一个热点问题.
常求:等腰、直角、相似三角形和四边形的形状,一般都要分类;
面积、周长、线段和差的关系和最值.
解这类题目要“以静制动”,即把动态问题,变为静态问题来解. 常用:几何方法——相似(全等)、勾股定理、面积关系建立方程或函数. 代数方法——设坐标或元,通过图形中特殊关系建立方程或函数.
特别注意:几何方法和代数方法往往是不是孤立的,是相互交融的,即数形结合. 一、热点再练
1.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )
A B C D
2.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了 秒(结果保留根号).
第2题 第3题
3.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运
动时间t= 秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
4.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
1
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PDQB是菱形.
二、规律剖析
(一)因动点产生的等腰三角形问题
例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图
【基本方法】等腰三角形的存在性问题,一般要分类讨论;两腰相等可能转化为两角相等或者转化为其他线段之间关系,一般会用到勾股定理或相似中的比例式列方程. 【思路点拨】
1.第(2)题BP=2分两种情况.
2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.
3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.
2
(二)因动点产生的直角三角形问题
4x?4和x轴、y轴的交点分别为B、C,点A(-2,0). 3(1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.
① 求S与t的函数关系式;
② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;
③在运动过程中,当△MON为直角三角形时,求t的值.
例 2如图,直线y??
【基本方法】直角三角形的存在性问题,一般要分类讨论;遇到直角时一般考虑勾股定理或直角三角形相似或三角函数或代数法中的直线解析式. 【思路点拨】
1.第(1)题说明△ABC是等腰三角形,暗示了两个动点M、N同时出发,同时到达终点. 2.不论M在AO上还是在OB上,用含有t的式子表示OM边上的高都是相同的,用含有t的式子表示OM要分类讨论.
3.将S=4代入对应的函数解析式,解关于t的方程. 4.分类讨论△MON为直角三角形,不存在∠ONM=90°的可能. 【变式】条件不变,如果△MON的边与AC平行,求t的值.
(三)因动点产生的相似三角形问题
例3如图,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点. (1)求此抛物线的解析式;
(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;
3
(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.
,
【基本方法】相似三角形的存在性问题,一般都要分类讨论;如果有两个角相等,那这两个角一般是对应角,所以只要讨论两种情况. 【思路点拨】
1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.
4.把△DCA可以分割为共底的两个三角形,高的和等于OA.
(四)因动点产生的平行四边形问题 例4如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=_______,PD=_______;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
4
(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.
图1 图2
【基本方法】平行四边形的存在性问题,一般都要分类讨论;比如已知的边是平行四边形的边或对角线,但本题四边形PDBQ为菱形,只要满足一组对边平行且相等和一组邻边相等.
【思路点拨】
1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.
2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.
(五)因动点产生的面积问题
例5如图,已知抛物线y?12x?bx?c(b、c是常数,且c<0)与x轴交于A、B2两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b=______,点B的横坐标为_______(上述结果均用含c的代数式表示); (2)连结BC,过点A作直线AE//BC,与抛物线交于点E.点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC.设△PBC的面积为S.
①求S的取值范围;
5