.
填空题:
1、利用有限单元法求解弹性力学问题时,简单来说包含 结构离散化 、 单元分析 、 整体分析 三个主要步骤。
2、有限单元法首先将连续体变换成为 离散化结构 ,然后再用 结构力学位移法 进行求解。其具体步骤分为 单元分析 和 整体分析 两部分。
3、每个单元的位移一般总是包含着两部分:一部分是由 本单元的形变 引起的,另一部分是由于 其他单元发生了形变 而连带引起的。
4、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓 变量应变 ;另一部分是与位置坐标无关的,是各点相同的,即所谓 常量应变 。
5、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的 刚体位移 和 常量应变 ,还应当尽可能反映相邻单元的 位移连续性 。
6、为了使得单元部的位移保持连续,必须把位移模式取为 坐标的单值连续函数 ,为了使得相邻单元的位移保持连续,就不仅要使它们在 公共结点处 具有相同的位移时,也能在 整个公共边界上 具有相同的位移。
7、在有限单元法中,单元的形函数Ni在 i 结点Ni= 1 ;在其他结点Ni= 0 及∑Ni= 1 。 8、为了提高有限单元法分析的精度,一般可以采用两种方法:一是 将单元的尺寸减小 ,以便较好地反映位移和应力变化情况;二是 采用包含更高次项的位移模式 ,使位移和应力的精度提高。
9、在有限单元法中,结点力是指结点对单元的作用力。(√)
10、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ ) 11、形函数Ni(xi,yi)= __(i=j) Ni(xi,yi)= __(i≠j)
简答题:
1、有限元分析的基本思路
答:首先,将物体或求解域离散为有限个互不重叠仅通过节点互相连接的子域(即单元),原始边界条件也被转化为节点上的边界条件,此过程称为离散化。
其次,在单元,选择简单近似函数来分片逼近未知的求解函数,即分片近似。具体做法
.专业WORD
.
是在单元上选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,这是有限元法的创意和精华所在。而整体区域上的解函数就是这些单元上的简单近似函数的组合。
最后,基于与原问题数学模型(基本方程和边界条件)等效的变分原理或加权残值法,建立有限元方程(即刚度方程),从而将微分方程转化为一组变量或其导数的节点值为未知量的代数方程组。从而借助矩阵表示和计算机求解代数方程组得到原问题的近似解。
2、简述有限元法求解中离散处理所遵循原则。
答:(1)几何逼真,(2)受力真实,(3)计算准确,(4)计算量少,(5)单元编号遵循右手准则(相邻单元编号差值最小)。
3、 针对附图所示的有限元结构,组集出整体刚度矩阵K。(单元刚度矩阵用K表示,单元刚度矩阵元素用
eKije 表示)。
5
单元刚度矩阵: 1 2 3
4
2 4 3
.专业WORD
.
K①
?k11???k21??k31k12k22k32k13?1k23??2 k33??3?k22? K②=k42???k32k24k44k34k23?2k43??4 k33??34 6 3 2 5 4
?k44?K③=k64???k34k46k66k36k43?4?k22?k63? K④=k526???k33??3?k42k25k55k45k24?2k54??5 k44??4
单元刚度贡献矩阵:
1 2 3 4 5 6 1 2 3 4 5 6
①?k11?①?k21①?k31①K=??0?0??0?①k12①k22①k32①k13①k23①k33000000?00000?1??0k②000?222??0k32000?3②? K=?000?4?0k42?00000?5??6000????000k23k33k43000k24k34k440000?00??00??00?00??00??123456
1 2 3 4 5 6 1 2 3 4 5 6
?0?0??0③K=??0?0???0000000k34k440k640000000k330k43000k630?0??k36??k46?0??k66??1?00?0k④222??003④ K=?4?0k42?0k525?6??00000k250k45k5500k24000k440k54000?0??0??0?0??0??123456
整体刚度矩阵:
1 2 3 4 5 6
①?k11?①?k21①?k31K=??0?0??0?①k12①②④k22?k22?k22①②k32?k32②④k42?k42④k520①k13①②k23?k23①②③k33?k33?k33②③k43?k430②④k24?k24②③k34?k34②③④k44?k44?k44④k54③k640④k250④k45k5500③k630??0?0??③k46?0??③k66??123456
3、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?
答:1.结构的离散化,2 单元分析2.1 选择位移函数2.2 载荷等效2.3 单元刚度矩阵3 整
.专业WORD
.
体分析3.1 集成等效节点载荷3.2 集成整体刚度 矩阵3.3 约束边界条件
1)建立实际工程问题的计算模型 利用几何、载荷的对称性简化模型 建立等效模型 2)选择适当的分析工具 侧重考虑以下几个方面: 多物理场耦合问题 大变形 网格重划分
3)前处理(Preprocessing)
建立几何模型(Geometric Modeling,自下而上,或基本单元组合) 有限单元划分(Meshing)与网格控制 4)求解(Solution)
给定约束(Constraint)和载荷(Load) 求解方法选择 计算参数设定
5)后处理(Postprocessing)
后处理的目的在于分析计算模型是否合理,提出结论。
用可视化方法(等值线、等值面、色块图)分析计算结果,包括位移、应力、应变、温度等;
最大最小值分析; 特殊部位分析。
4、在有限单元法中,位移模式应满足哪些基本条件。 答:(1)位移模式必须包含单元刚体位移; (2)位移模式必须包含单元的常应变;
(3)位移模式在单元要连续,且唯一在相邻单元之间要协调。 5、简述有限单元法结构刚度矩阵的特点。
答:(1)对称性;(2)奇异性;(3)主对角元恒正; (4)稀疏性;(5)非零元素带状分布。
.专业WORD
.
6、简述有限单元法中单元刚度矩阵的性质。 答:(1)单元刚度矩阵为对称矩阵; (2)单元刚度矩阵为奇异矩阵;
(3)单元刚度矩阵主对角线元素恒为正值; (4)单元刚度矩阵仅与单元本身有关。 7、简述有限单元法中形函数的性质。
答:(1)形函数Ni在节点i处的值为1,在其他两个节点j,m处的值为0; (2)在单元上任意一点处,3个形函数的和都等于1。 8、简述有限元法中选取单元位移函数(多项式)的一般原则。 答:一般原则:
(1)广义坐标的个数应该与结点自由度数相等; (2)选取多项式时,常数项和坐标的一次项必须完备; (3)多项式的选取应由低阶到高阶; (4)尽量选取完全多项式以提高单元的精度。
9、要保证有限单元法计算结果的收敛性,位移函数必须满足那些条件? 答:(1)位移函数必须能够反映单元的常量应变; (2)位移函数必须能够反映单元的刚性位移; (3)位移函数在单元部必须是连续函数; (4)位移函数必须保证相邻单元间唯一协调。
10、为了保证有限单元法解答的收敛性,位移模式应满足哪些条件? 答:为了保证有限单元法解答的收敛性,位移模式应满足下列条件: (1)位移模式必须能反映单元的刚体位移; (2)位移模式必须能反映单元的常量应变; (3)位移模式应尽可能反映位移的连续性。
11、以三节点三角形单元为例,简述有限单元法求解离散化结构的具体步骤。 答:(1)取三角形单元的结点位移为基本未知量。
(2)应用插值公式,由单元的结点位移求出单元的位移函数。 (3)应用几何方程,由单元的位移函数求出单元的应变。 (4)应用物理方程,由单元的应变求出单元的应力。 (5)应用虚功方程,由单元的应力出单元的结点力。
.专业WORD