2016年黑龙江省大庆市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为( ) A.36.1×107B.0.361×109C.3.61×108D.3.61×107
2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是( )
A.a?b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0 3.下列说法正确的是( ) A.对角线互相垂直的四边形是菱形 B.矩形的对角线互相垂直
C.一组对边平行的四边形是平行四边形 D.四边相等的四边形是菱形
4.当0<x<1时,x2、x、的大小顺序是( ) A.x2
B.<x<x2C.
<x D.x<x2<
5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A. B. C. D.
6.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有( )个.
A.5 B.6 C.7 D.8
7.下列图形中是中心对称图形的有( )个.
A.1 B.2 C.3 D.4
8.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
A.0 B.1 C.2 D.3
9.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是( )
A.x1?x2<0 B.x1?x3<0 C.x2?x3<0 D.x1+x2<0
10.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为( )
A.M>N B.M=N C.M<N D.不确定
二、填空题(本大题共8小题,每小题3分,共24分) 11.函数y=
的自变量x的取值范围是 .
12.若am=2,an=8,则am+n= .
13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是 (填“甲”或“乙”).
14.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC= .
15.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为 .
16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为 海里/小时.
17.如图,在矩形ABCD中,AB=5,BC=10面积为 .
,一圆弧过点B和点C,且与AD相切,则图中阴影部分
18.直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为 .
三、解答题(本大题共10小题,共66分) 19.计算(
+1)2﹣π0﹣|1﹣
|
20.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值. 21.关于x的两个不等式①
<1与②1﹣3x>0
(1)若两个不等式的解集相同,求a的值;
(2)若不等式①的解都是②的解,求a的取值范围.
22.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?
23.为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):
(1)根据以上信息回答下列问题: ①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数. ③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
24.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E. (1)求证:AG=CG. (2)求证:AG2=GE?GF.
25.P1、P2是反比例函数y=(k>0)0)如图,在第一象限图象上的两点,点A1的坐标为(4,.若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点. (1)求反比例函数的解析式. (2)①求P2的坐标.
②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.
26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).
(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量. (2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.
27.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.
(1)求证:MH为⊙O的切线.
(2)若MH=,tan∠ABC=,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.
28.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.