好文档 - 专业文书写作范文服务资料分享网站

2019届初高中数学衔接知识点与习题

天下 分享 时间: 加入收藏 我要投稿 点赞

------WORD格式--可编辑-----

∵x12+x22-x1·x2=21, ∴(x1+x2)2-3 x1·x2=21,

即 [-2(m-2)]2-3(m2+4)=21, 化简,得 m2-16m-17=0, 解得 m=-1,或m=17.

当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意; 当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m=-1. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.

(★)在今后的解题过程中,如果用由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于等于零.因为,韦达定理成立的前提是一元二次方程有实数根.

例4 已知两个数的和为4,积为-12,求这两个数.

分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解. 解法一:设这两个数分别是x,y, 则 x+y=4, ①

xy=-12. ② 由①,得 y=4-x, 代入②,得x(4-x)=-12, 即 x2-4x-12=0, ∴x1=-2,x2=6.

?x1??2,?x2?6, ∴? 或?

y?6,y??2.?1?2因此,这两个数是-2和6.

解法二:由韦达定理可知,这两个数是方程 x2-4x-12=0 的两个根. 解这个方程,得 x1=-2,x2=6. 所以,这两个数是-2和6.

说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x1和x2分别是一元二次方程2x2+5x-3=0的两根. (1)求| x1-x2|的值; (2)求

11?的值; (3)x13+x23. 22x1x2解:∵x1和x2分别是一元二次方程2x2+5x-3=0的两根, ∴x1?x2??(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4 x1x2=(?)?4?(?)

53,x1x2??. 2252232 =

25497+6=, ∴| x1-x2|=.

4245325(?)2?2?(?)?3222x1?x2(x1?x2)?2x1x2113722?4(2)2?2?2. ???2239x1x2x1?x2(x1x2)9(?)224(3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]

=(-

553215)×[(-)2-3×(?)]=-. 2282注意: ...

说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出

其一般规律:

设x1和x2分别是一元二次方程ax2+bx+c=0(a≠0),则

?b?b2?4ac?b?b2?4ac,x2?, x1?2a2a?b?b2?4ac?b?b2?4ac2b2?4ac??∴| x1-x2|=

2a2a2ab2?4ac? ?. ?|a||a|于是有下面的结论:

若x1和x2分别是一元二次方程ax2+bx+c=0(a≠0),则| x1-x2|=

?(其中Δ=b2-4ac). |a|今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.

例6 若关于x的一元二次方程x2-x+a-4=0的一根大于零、另一根小于零,求实数a的取值范围. 解:设x1,x2是方程的两根,则 x1x2=a-4<0, ①

--------

------WORD格式--可编辑-----

且Δ=(-1)2-4(a-4)>0. ② 由①得 a<4,

17

由②得 a< .

4

∴a的取值范围是a<4.

练习A

1.选择题:

(1)方程x?23kx?3k?0的根的情况是 ( ) (A)有一个实数根 (B)有两个不相等的实数根

(C)有两个相等的实数根 (D)没有实数根

(2)若关于x的方程mx2+ (2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是 ( ) (A)m<

221111 (B)m>- (C)m<,且m≠0 (D)m>-,且m≠0 4444(3)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是( )

(A)-3 (B)3 (C)-2 (D)2 (4)下列四个说法:

①方程x2+2x-7=0的两根之和为-2,两根之积为-7; ②方程x2-2x+7=0的两根之和为-2,两根之积为7;

③方程3 x2-7=0的两根之和为0,两根之积为?7; 3④方程3 x2+2x=0的两根之和为-2,两根之积为0. 其中正确说法的个数是 ( )

(A)1个 (B)2个 (C)3个 (D)4个

(5)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是( )

(A)0 (B)1 (C)-1 (D)0,或-1

2.填空:

(1)若方程x2-3x-1=0的两根分别是x1和x2,则

11?= . x1x2(2)方程mx2+x-2m=0(m≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 . (4)方程kx2+4x-1=0的两根之和为-2,则k= . (5)方程2x2-x-4=0的两根为α,β,则α2+β2= .

(6)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是 . (7)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|= .

3.已知a2?8a?16?|b?1|?0,当k取何值时,方程kx2+ax+b=0有两个不相等的实数根?

4.已知方程x2-3x-1=0的两根为x1和x2,求(x1-3)( x2-3)的值.

5.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?

6.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.

练习B组 1.选择题:

若关于x的方程x2+(k2-1) x+k+1=0的两实根互为相反数,则k的值为 ( ) (A)1,或-1 (B)1 (C)-1 (D)0 2.填空:

(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于 .

--------

------WORD格式--可编辑-----

(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2+b3的值是 . 3.已知关于x的方程x2-kx-2=0.

(1)求证:方程有两个不相等的实数根;

(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围.

4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1和x2.求: (1)| x1-x2|和

x1?x2;(2)x13+x23. 2

5.关于x的方程x2+4x+m=0的两根为x1,x2满足| x1-x2|=2,求实数m的值.

2.2 二次函数

2.2.1 二次函数y=ax2+bx+c的图像和性质

一、复习引申:问题1 函数y=ax2与y=x2的图象之间存在怎样的关系?

为了研究这一问题,我们可以先画出y=2x2,y=导出函数y=ax2与y=x2的图象之间所存在的关系.

先画出函数y=x2,y=2x2的图象. 先列表: x x2 2x2 … … … -3 9 18 -2 4 8 -1 1 2 0 0 0 1 1 2 2 4 8 3 9 18 … … 12

x,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推2从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.

同学们也可以用类似于上面的方法画出函数y=

12

x,y=-2x2的图象,并研究这两个函数图象与函数y2y=2x2 y y=x2 =x2的图象之间的关系.

通过上面的研究,我们可以得到以下结论: 1、二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.

问题2 函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x+1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.

类似地,还可以通过画函数y=-3x2,y=-3(x-1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:

2、二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图象的开口大小及方向;h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”.

由上面的结论,我们可以得到研究二次函数y=ax2+bx+c(a≠0)的图象的方法:

O 图2.2-1

y x y=2(x+1)2+1 y=2(x+1)2 y=2x2 b2b2bb222

由于y=ax+bx+c=a(x+x)+c=a(x+x+2)+c-

4a4aaab2b2?4ac)? ?a(x?, 2a4a所以,y=ax2+bx+c(a≠0)的图象可以看作是将函数y=ax2的图象作左右平移、上下平移得到的,

--------

-1 O 图2.2-2

x ------WORD格式--可编辑-----

于是,二次函数y=ax2+bx+c(a≠0)具有下列性质:

b4ac?b2bb,),对称轴为直线x=-3、(1)当a>0时,函数y=ax+bx+c图象开口向上;顶点坐标为(?;当x<?时,y2a4a2a2a2

4ac?b2bb随着x的增大而减小;当x>?时,y随着x的增大而增大;当x=?时,函数取最小值y=.

4a2a2a2b4ac?bbb,),对称轴为直线x=-(2)当a<0时,函数y=ax2+bx+c图象开口向下;顶点坐标为(?;当x<?时,y随着2a4a2a2a4ac?b2bbx的增大而增大;当x>?时,y随着x的增大而减小;当x=?时,函数取最大值y=.

4a2a2a 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函

数图像、利用数形结合的思想方法来解决问题.

2y b4ac?by b,) A(?x=- 2a4a2a O x O x b4ac?b2b ,) A(?x=- 2a4a2a

图2.2-4 图2.2-3

二、典型例题:

例1 求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.

解:∵y=-3x2-6x+1=-3(x+1)2+4, ∴函数图象的开口向下;

A(-1,4) y 对称轴是直线x=-1; 顶点坐标为(-1,4);

当x=-1时,函数y取最大值y=4;

当x<-1时,y随着x的增大而增大;当x>-1时,y随着x的增大而减小;

采用描点法画图,选顶点A(-1,4)),与x轴交于点B(23?323?3,0)和C(?,0),与y轴的33D(0,1) 交点为D(0,1),过这四点画出图象(如图2-5所示).

说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选

O B x C 点的盲目性,使画图更简便、图象更精确.

例2 某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之x=-1 间关系如下表所示: 图2.2-5

x /元 130 150 165 y/件 70 50 35 若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?

分析:由于每天的利润=日销售量y×(销售价x-120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.

解:由于y是x的一次函数,于是,设y=kx+b

将x=130,y=70;x=150,y=50代入方程,有??70?130k?b,

50?150k?b,?解得 k=-1,b=200.∴ y=-x+200.

设每天的利润为z(元),则

z=(-x+200)(x-120)=-x2+320x-24000

=-(x-160)2+1600, ∴当x=160时,z取最大值1600. 答:当售价为160元/件时,每天的利润最大,为1600元.

例3 把二次函数y=x2+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数y=x2的图像,求b,c的值.

b2b2bb222

解法一:y=x+bx+c=(x+)?c?,把它的图像向上平移2个单位,再向左平移4个单位,得到y?(x??4)?c??2的

4242图像,也就是函数y=x2的图像,所以,

--------

------WORD格式--可编辑-----

?b??4?0,??2 ? 解得b=-8,c=14. 2?c?b?2?0,?4? 解法二:把二次函数y=x2+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数y=x2的图像,等价于把二次函数y=x2的图像向下平移2个单位,再向右平移4个单位,得到函数y=x2+bx+c的图像. 由于把二次函数y=x2的图像向下平移2个单位,再向右平移4个单位,得到函数y=(x-4)2+2的图像,即为y=x2-8x+14的图像,∴函数y=x2-8x+14与函数y=x2+bx+c表示同一个函数,∴b=-8,c=14.

说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.

这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题. 三、练习A 1.选择题:

(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A)y=2x2 (B)y=2x2-4x+2 (C)y=2x2-1 (D)y=2x2-4x

(2)函数y=2(x-1)2+2是将函数y=2x2 ( )

(A)向左平移1个单位、再向上平移2个单位得到的 (B)向右平移2个单位、再向上平移1个单位得到的 (C)向下平移2个单位、再向右平移1个单位得到的 (D)向上平移2个单位、再向右平移1个单位得到的 2.填空题

(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m= ,n= .

(2)已知二次函数y=x2+(m-2)x-2m,当m= 时,函数图象的顶点在y轴上;当m= 时,函数图象的顶点在x轴上;

当m= 时,函数图象经过原点.

(3)函数y=-3(x+2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x= 时,函数取最 值

y= ;当x 时,y随着x的增大而减小.

3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象. (1)y=x2-2x-3; (2)y=1+6 x-x2.

2.2.2 二次函数的三种表示方式

一、复习引申:通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:

1.一般式:y=ax2+bx+c(a≠0);

2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).

除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.

当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有

ax2+bx+c=0. ①

并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)

与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:

(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.

(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.

(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.

于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以 x1+x2=?bc,x1x2=,

aabc即 =-(x1+x2), =x1x2.

aa--------

2019届初高中数学衔接知识点与习题

------WORD格式--可编辑-----∵x12+x22-x1·x2=21,∴(x1+x2)2-3x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+3
推荐度:
点击下载文档文档为doc格式
6axd24a3p20fvam2gyzr6h1tx45d76007ne
领取福利

微信扫码领取福利

微信扫码分享