第9章 挤出模具设计
9.1 概 述
塑料挤出成型是用加热的方法使塑料成为流动状态,然后在一定压力的作用下使它通过塑模,经定型后制得连续的型材。挤出法加工的塑料制品种类很多,如管材、薄膜、棒材、板材、电缆敷层、单丝以及异形截面型材等。挤出机还可以对塑料进行混合、塑化、脱水、造粒和喂料等准备工序或半成品加工。因此,挤出成型已成为最普通的塑料成型加工方法之一。
用挤出法生产的塑料制品大多使用热塑性塑料,也有使用热固性塑料的。如聚氯乙烯、聚乙烯、聚丙烯、尼龙、ABS、聚碳酸酯、聚砜、聚甲醛、氯化聚醚等热塑性塑料以及酚醛、脲醛等热固性塑料。
挤出成型具有效率高、投资少、制造简便,可以连续化生产,占地面积少,环境清洁等优点。通过挤出成型生产的塑料制品得到了广泛的应用,其产量占塑料制品总量的三分之一以上。因此,挤出成型在塑料加工工业中占有很重要的地位。
一、挤出成型机头典型结构分析
机头是挤出成型模具的主要部件,它有下述四种作用: (1)使物料由螺旋运动变为直线运动; (2)产生必要的成型压力,保证制品密实; (3)使物料通过机头得到进一步塑化; (4)通过机头成型所需要的断面形状的制品。
现以管材挤出机头为例,分析一下机头的组成与 结构,见图8-1所示。 1.口模和芯棒
口模成型制品的外表面,芯棒成型制品的内表面,故口模和芯棒的定型部分决定制品的横截面形状和尺寸。
2.多孔板(过滤板、栅板)
如图8-2所示,多孔板的作用是将物料由螺旋运动变为直线运动,同时还能阻止未塑化的塑料和机械杂质进入机头。此外,多孔板还能形成一定的机头压力,使制品更加密实。
3.分流器和分流器支架
分流器又叫鱼雷头。塑料通过分流器变成薄环状,便于进一步加热和塑化。大型挤出机的分流器内部还装有加热装置。
分流器支架主要用来支撑分流器和芯棒,同时也使料流分束以加强搅拌作用。小型机头的分流
器支架可与分流器设计成整体。
4.调节螺钉
用来调节口模与芯棒之间的间隙,保证制品壁厚均匀。 5.机头体
用来组装机头各零件及挤出机连接。 6.定径套
使制品通过定径套获得良好的表面粗糙度,正确的尺寸和几何形状。 7.堵塞
防止压缩空气泄漏,保证管内一定的压力。
二、挤出成型机头分类及其设计原则
1.分类
由于挤出制品的形状和要求不同,因此要有相应的机头满足制品的要求,机头种类很多,大致可按以下三种特征来进行分类:
(1)按机头用途分类
可分为挤管机头、吹管机头、挤板机头等; (2)按制品出口方向分类
可分为直向机头和横向机头,前者机头内料流方向与挤出机螺杆轴向一致,如硬管机头;后者机头内料流方向与挤出机螺杆轴向成某一角度,如电缆机头;
(3)按机头内压力大小分类
可分为低压机头(料流压力为MPa)、中压机头(料流压力为4-10MPa)和高压机头(料流压力在10MPa以上)。
2.设计原则 (1)流道呈流线型
为使物料能沿着机头的流道充满并均匀地被挤出,同时避免物料发生过热分解,机头内流道应呈流线型,不能急剧地扩大或缩小,更不能有死角和停滞区,流道应加工得十分光滑,表面粗糙度应在Ra 0.4um以下。
(2)足够的压缩比
为使制品密实和消除因分流器支架造成的结合缝,根据制品和塑料种类不同,应设计足够的压缩比。
(3)正确的断面形状
机头的成型部分的设计应保证物料挤出后具有规定的断面形状,由于塑料的物理性能和压力、温度等因素的影响,机头的成型部分的断面形状并非就是制品的相应的断面形状,二者有相当的差异,设计时应考虑此因素,使成型部分有合理的断面形状。由于制品断面形状的变化与成型时间有关,因此控制必要的成型长度是一个有效的方法。
(4)结构紧凑
在满足强度条件下,机头结构应紧凑,其形状应尽量做得规则而对称,使传热均匀,装卸方便和不漏料。
(5)选材要合理
由于机头磨损较大,有的塑料又有较强的腐蚀性,所以机头材料应选择耐磨、硬度较高的碳钢或合金钢,有的甚至要镀铬,以提高机头耐腐蚀性。
此外,机头的结构尺寸还和制品的形状、加热方法、螺杆形状、挤出速度等因素有关。设计者应根据具体情况灵活应用上述原则。
9.2 典型挤出机头及设计
常见的挤出机头有管材挤出机头、吹管膜机头、电线电缆包覆机头、异形材料挤出机头等。
一、管材挤出机头及设计
1.管材挤出机头的结构形式
常见的管材挤出机头结构形式有以下四种:
(1)直管式机头 图8-3为直管式机头。其结构简单,具有分流器支架。芯模加热困难,定型长度较长。适用于PVC、PA、PC、PE、PP等塑料的薄壁小口径的管材挤出。
(2)弯管式机头 图8-4为弯管式机头。其结构复杂,没有分流器支架,芯模容易加热,定型长度不长。大小口径管材均适用,特别适用于定内径的PE、PP、PA等塑料管材成型。
(3)旁侧式机头 图8-5为旁侧式机头,结构复杂,没有分流器支架,芯模可以加热,定型长度也不长。大小口径管材均适用。
2.管材挤出机头零件的设计 (1) 口模
口模是成型管材外表面的零件,其结构如图8-6所示。口模内径不等于塑料管材外径,因为从口模挤出的管坯由于压力突然降低,塑料因弹性恢复而发生管径膨胀,同时,管坯在冷却和牵引作用下,管径会发生缩小。这些膨胀和收缩的大小与塑料性质、挤出温度和压力等成型条件以及定径
套结构有关,目前尚无成熟的理论计算方法计算膨胀和收缩值,一般是根据要求的管材截面尺寸,按拉伸比确定口模截面尺寸。所谓拉伸比是指口模成型段环隙横截面积与管材横截面积之比。
即
2?r2??r12r2?r1I?2?2 ? R ? ? R 1 2 R ? R 1 2 (8-1)
式中I为拉伸比,常用塑料允许的拉伸比如下:PVC为1.0~1.4,PA为1.4~3.0;ABS为1.0~1.1;PP为1.0~1.2;HDPE为1.1~1.2;LDPE为1.2~1.5。
r——口模内径; r1——芯棒外径; R——管材外径; R1——管材内径。
口模定型段长度L1与塑料性质、管材的形状、壁厚、直径大小及牵引速度有关。其值可按管材外径或管材壁厚来确定;
L1=(0.5~3)D (8-2) 或 L1=(8~15)t (8-3) 式中 D——管材外径; t——管材壁厚。 (2)芯模
芯模是成型管材内表面的零件,如图8-8所示。直管机头与分流器以螺纹联接。
芯模的结构应有利于熔体流动,有利于消除熔体经过分流器后形成的结合缝。熔体流过分流器支架后,先经过一定的压缩,使熔体很好地汇合。为此芯模应有收缩角β,其值决定于塑料特性,对于粘度较高的硬聚乙烯,β一般30°~50°;对于粘度低的塑料β可取45°~60°。芯模的长度L1′与口模L1相等。L2一般按下式决定:
L2=(1.5~2.5)D0 (8-4) 式中D0——栅板出口处直径。 芯模直径d1可按下式计算;
d1=d—2δ (8-5) 式中δ—芯模与口模之间间隙; d—口模内径。
由于如上所述塑料熔体挤出口模后的膨胀与收缩,使δ不等于制品壁厚,δ可按下式计算: ? ? t (8-6)
k式中k—经验系数,k=1.16~1.20; t—制品壁厚。
为了使管材壁厚均匀,必须设置调节螺钉(图8-3件3)以便安装与调整口模与芯模之间间隙。调节螺钉数目一般为4~8个。
(3)分流器
分流器的作用是使熔体料层变薄,以便均匀加热,使之进一步塑化。其结构如图8-8所示。 分流器与栅板之间的距离一般取10~20mm,或稍小于0.1D1(D1为挤出机螺杆直径)。保持分流器与栅板之间的一定距离的作用是使通过栅板的熔体汇集。因此,该距离不宜过小,否则熔体流速不稳定,不均匀;距离过大,熔体在此空间停留时间较长,高分子容易产生分解。
分流器的扩张角α值取决于塑料粘度,低粘度塑料取α=30°~80°,高粘度塑料取α=30°~60°, α太大,熔体流动阻力大;α过小,势必增大分流锥部分的长度。
分流锥的长度一般按下式确定:
L3=(1~1.5)D0 (8-7) 式中D0 ——栅板出口处直径。 分流器头部圆角r一般取0.5~2mm。 (4)分流器支架
分流器支架设有进气孔和导线孔,用以通入压缩空气和内装置电热器时导入导线。通入压缩空气的作用是为了管材的定径(内压法外径定型)和冷却。
分流器支架与分流器可以制成整体式的(图8-8),也可制成组合式的(图8-1)。前者一般用于中小型机头,后者一般用于大型机头。分流器支架上的分流筋的数目在满足支持强度的条件下,以少为宜,一般为3~8根。分流筋应制成流线型的(图8-8A-A剖面),在满足强度前提下,其宽度和长度应尽量小些,而且出料端的角度应小于进料端的角度。
(5)定径套
对于外径定型法,直径小于30mm的硬聚氯乙烯管材,定径套长度取管径的3-6倍,其倍数随管径减小而增加,当管径小于35mm时,其倍数可增至10倍。对于聚烯烃管材,定径套长度为管径的2~5倍,其倍数随直径减小而增大。
定径套直径通常比机头口模直径大2%~4%,且出口直径比进口直径略小。
对于内径定型法,定径芯模长度取80~300mm,其外径比管材内径大2%~4%,以利于管材内径公差的控制。定径芯模锥度为1:1.6~1:10,始端大,终端小。