好文档 - 专业文书写作范文服务资料分享网站

整合素β1在鲤CyHV-3病毒中基因相对表达量研究 - 图文 

天下 分享 时间: 加入收藏 我要投稿 点赞

孙佳鑫 等

在未选育组中,脾组织基因的表达量在48 h显著高于其对照组(P < 0.05),脾组织与脾对照组基因的表达量在96~288 h并无明显差异(P > 0.05) (如图2(c));肾组织基因的表达量在48~288 h均无明显差异(P > 0.05) (如图2(d))。

3.3. 选育组与未选育组中整合素β1基因相对表达量比较

将选育组和未选育组进行比较,在脾、肾组织及其对照组中选育组基因的表达量均低于未选育组,其中在48 h选育组和未选育组的基因表达量均达到最高。

在脾组织中,基因在192 h、288 h选育组表达量显著低于未选育组(P < 0.05),而在240 h差异达到极显著(P < 0.01) (如图3(a));在脾组织对照组中,基因在192 h、240 h选育组表达量显著低于未选育组(P < 0.05),在288 h差异达到极显著(P < 0.001) (如图3(b))。

在肾组织中,基因在48 h、144 h、192 h、240 h、288 h选育组表达量相比未选育组,差异极显著(P < 0.01,P < 0.001,P < 0.01,P < 0.01,P < 0.001) (如图3(c));在肾组织对照组中,基因在144 h、192 h选育组表达量显著低于未选育组(P < 0.05),在240 h、288 h差异达到极显著(P < 0.001) (如图3(d))。

注:标记*不同表示组内存在显著性差异(*P < 0.05, **P < 0.01, ***P<0.001)

Figure 3. Comparison of relative expression of integrin b1 in spleen and kidney tissue at different infection stages. (a) Ex-pression of spleen tissue selection group and non-selection group; (b) Expression of spleen tissue control group and non-selection group; (c) Expression of kidney tissue selection and non-selection group; (d) Expression of the kidney tissue control group and non-selection group

图3. 对比不同感染阶段脾、肾组织中整合素β1基因相对表达情况。(a) 脾组织选育组及未选育组表达情况;(b) 脾组织对照组选育组及未选育组表达情况;(c) 肾组织选育组及未选育组表达情况;(d) 肾组织对照组选育组及未选育组表达情况

DOI: 10.12677/ije.2020.92019

156

世界生态学

孙佳鑫 等

4. 讨论

为了了解CyHV-3对鲤鱼整合素β1表达的影响,本研究测定了不同感染时间鲤鱼脾、肾整合素β1的表达。结果表明,整合素β1的相对表达在感染早期48 h最高,脾、肾组织与其对照组相比差异具有显著性(p < 0.01) (图3(a),图3(b))。此外,还发现随着感染时间的延长,整合素β1的相对表达逐渐降低。另一方面,整合素β1的表达在感染后48 h最高,48 h、96 h、144 h显著降低。值得注意的是,我们发现整合素β1的表达水平与其在相应感染期的转录水平相似。以上结果提示,整合素β1可能在鲤鱼头肾CyHV-3感染早期起重要作用。

CyHV-3病是由Koi疱疹病毒(KHV)引起的鲤鱼(Cyprinus carpio)感染的常见病[20],死亡率超过80% [21] [22]。CyHV-3对世界水产养殖业造成了巨大的经济损失,严重威胁着鲤鱼产业的发展。先前的报告表明,鲤鱼的免疫系统在CyHV-3感染的早期阶段起着关键作用[23]。鲤鱼头肾作为一种免疫组织[24],本研究表明,在CyHV-3感染早期,头肾中整合素β1的表达显著增加,并随着感染时间的延长而逐渐减少,表明当鲤鱼头肾中的整合素β1在CyHV-3感染早期可能具有重要的功能被感染了。整合素介导细胞与细胞外基质的粘附,先前的研究发现整合素胞质结构域调节病毒感染性[25]。此外,还发现整合素β1在感染CyHV-3早期有差异表达。虽然需要进一步研究整合素β1在鲤鱼体内的作用,但我们的发现提示,在病毒感染早期,头肾整合素β1可能参与鲤鱼CyHV-3感染。与对照组相比,感染早期整合素β1的表达水平明显升高,提示整合素β1可能调节鲤鱼头肾CyHV-3感染,可能与CyHV-3进入鲤鱼有关。

基金项目

本研究由中央级公益性科研院所基本科研业务费专项(2018HY-ZD0205)、国家大宗淡水鱼类产业技术体系鲤种质资源与品种改良(CARS-45-06)、农业部财政专项物种资源保护(2130135)项目共同资助。

参考文献

[1] Schittenhelm, J., Tabatabai, G. and Sipos, B. (2016) The Role of Integrins in Primary and Secondary Brain Tumors.

Histology and Histopathology, 31, 1069-1078. [2] Means, T.K. and Luster, A.D. (2010) Integrins Limit the Toll. Nature Immunology, 11, 691-693.

https://doi.org/10.1038/ni0810-691

[3] Paolillo, M., Serra, M. and Schinelli, S. (2016) Integrins in Glioblastoma: Still an Attractive Target? Pharmacological

Research, 113, 55-61. https://doi.org/10.1016/j.phrs.2016.08.004 [4] Gahmberg, C.G., Gronholm, M., Madhavan, S., et al. (2019) Regulation of Cell Adhesion: A Collaborative Effort of

Integrins, Their Ligands, Cytoplasmic Actors, and Phosphorylation. Quarterly Reviews of Biophysics, 52, e10. https://doi.org/10.1017/S0033583519000088 [5] Skubitz, A.P. (2002) Adhesion Molecules. Cancer Treatment Research, 107, 305-329.

https://doi.org/10.1007/978-1-4757-3587-1_15 [6] Hynes, R.O. (2002) Integrins: Bidirectional, Allosteric Signaling Machines. Cell, 110, 673-687.

https://doi.org/10.1016/S0092-8674(02)00971-6

[7] Fang, Z., Yao, W., Fu, Y., et al. (2010) Increased Integrin Alpha5beta1 Heterodimer Formation and Reduced c-Jun

Expression Are Involved in Integrin Beta1 Overexpression-Mediated Cell Growth Arrest. Journal of Cellular Bioche-mistry, 109, 383-395. https://doi.org/10.1002/jcb.22416 [8] Feldman, L.E., Shin, K.C., Natale, R.B., et al. (1991) Beta 1 Integrin Expression on Human Small Cell Lung Cancer

Cells. Cancer Research, 51, 1065-1070. [9] Song, D., Tang, L., Huang, J., et al. (2019) Roles of Transforming Growth Factor-Beta and Phosphatidylinositol

3-Kinase Isoforms in Integrin Beta1-Mediated Bio-Behaviors of Mouse Lung Telocytes. Journal of Translational Medicine, 17, 431. https://doi.org/10.1186/s12967-019-02181-2 [10] Yamamoto, H., Ehling, M., Kato, K., et al. (2015) Integrin Beta1 Controls VE-Cadherin Localization and Blood Vessel

Stability. Nature Communications, 6, 6429. https://doi.org/10.1038/ncomms7429

DOI: 10.12677/ije.2020.92019

157

世界生态学

孙佳鑫 等

[11] Lilja, J. and Ivaska, J. (2018) Integrin Activity in Neuronal Connectivity. Journal of Cell Science, 131, jcs212803.

https://doi.org/10.1242/jcs.212803 [12] Hannigan, G., Troussard, A.A. and Dedhar, S. (2005) Integrin-Linked Kinase: A Cancer Therapeutic Target Unique

among Its ILK. Nature Reviews Cancer, 5, 51-63. https://doi.org/10.1038/nrc1524 [13] Cheng, S.Y., Sun, G., Schlaepfer, D.D., et al. (2014) Grb2 Promotes Integrin-Induced Focal Adhesion Kinase (FAK)

Autophosphorylation and Directs the Phosphorylation of Protein Tyrosine Phosphatase Alpha by the Src-FAK Kinase Complex. Molecular and Cellular Biology, 34, 348-361. https://doi.org/10.1128/MCB.00825-13 [14] Llinas-Arias, P. and Esteller, M. (2017) Epigenetic Inactivation of Tumour Suppressor Coding and Non-Coding Genes

in Human Cancer: An Update. Open Biology, 7, Article ID: 170152. https://doi.org/10.1098/rsob.170152 [15] Morris, M.A., Laverick, L., Wei, W., et al. (2018) The EBV-Encoded Oncoprotein, LMP1, Induces an Epitheli-al-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling. Cancers (Basel), 10, pii: E130. https://doi.org/10.3390/cancers10050130 [16] Jahan, R., Macha, M.A., Rachagani, S., et al. (2018) Axed MUC4 (MUC4/X) Aggravates Pancreatic Malignant Phe-notype by Activating Integrin-beta1/FAK/ERK Pathway. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1864, 2538-2549. https://doi.org/10.1016/j.bbadis.2018.05.008 [17] Li, H., Yang, G., Ma, F., et al. (2017) Molecular Characterization of a Fish-Specific Toll-Like Receptor 22 (TLR22)

Gene from Common Carp (Cyprinus carpio L.) Evolutionary Relationship and Induced Expression upon Immune Sti-mulants. Fish and Shellfish Immunology, 63, 74-86. https://doi.org/10.1016/j.fsi.2017.02.009 [18] Adamek, M., Syakuri, H., Harris, S., et al. (2013) Cyprinid Herpesvirus 3 Infection Disrupts the Skin Barrier of Com-mon Carp (Cyprinus carpio L.). Veterinary Microbiology, 162, 456-470. https://doi.org/10.1016/j.vetmic.2012.10.033 [19] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative

PCR and the 2-ΔΔCT Method. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262 [20] Ronsmans, M., Boutier, M., Rakus, K., et al. (2014) Sensitivity and Permissivity of Cyprinus carpio to Cyprinid Her-pesvirus 3 during the Early Stages of Its Development: Importance of the Epidermal Mucus as an Innate Immune Bar-rier. Veterinary Research, 45, 100. https://doi.org/10.1186/s13567-014-0100-0 [21] Hedrick, R.P., Gilad, O., Yun, S., et al. (2000) A Herpesvirus Associated with Mass Mortality of Juvenile and Adult

Koi, a Strain of Common Carp. Journal of Aquatic Animal Health, 12, 44-57. https://doi.org/10.1577/1548-8667(2000)012<0044:AHAWMM>2.0.CO;2 [22] Ilouze, M., Dishon, A. and Kotler, M. (2006) Characterization of a Novel Virus Causing a Lethal Disease in Carp and

Koi. Microbiology and Molecular Biology Reviews, 70, 147-156. https://doi.org/10.1128/MMBR.70.1.147-156.2006 [23] Sunarto, A., McColl, K.A., Crane, M.S., et al. (2014) Characteristics of Cyprinid Herpesvirus 3 in Different Phases of

Infection: Implications for Disease Transmission and Control. Veterinary Research, 188, 45-53. https://doi.org/10.1016/j.virusres.2014.03.024 [24] Zhang, Z., Zheng, Z., Cai, J., et al. (2017) Effect of Cadmium on Oxidative Stress and Immune Function of Common

Carp (Cyprinus carpio L.) by Transcriptome Analysis. Aquatic Toxicology, 192, 171-177. https://doi.org/10.1016/j.aquatox.2017.09.022 [25] Agrez, M.V., Shafren, D.R., Gu, X., et al. (1997) Integrin Alpha V Beta 6 Enhances Coxsackievirus B1 Lytic Infection

of Human Colon Cancer Cells. Virology, 239, 71-77. https://doi.org/10.1006/viro.1997.8831

DOI: 10.12677/ije.2020.92019

158

世界生态学

68rwj259uk6cyp27lz4y3h0qq02ukg01bye
领取福利

微信扫码领取福利

微信扫码分享