扇形弧长是解题的关键.
14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051
解析:5 【解析】 【分析】
根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答. 【详解】
以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,
由题意可得A(0,2.5),B(2,2.5),C(0.5,1) 设函数解析式为y=ax2+bx+c 把A. B. C三点分别代入得出c=2.5 同时可得4a+2b+c=2.5,0.25a+0.5b+c=1 解得a=2,b=?4,c=2.5. ∴y=2x2?4x+2.5=2(x?1)2+0.5. ∵2>0
∴当x=1时,ymin=0.5米.
15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A
解析:18 【解析】 【分析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可. 【详解】
∵D,E分别是AB,BC的中点, ∴AC=2DE=5,AC∥DE, AC2+BC2=52+122=169, AB2=132=169,
∴AC2+BC2=AB2, ∴∠ACB=90°, ∵AC∥DE,
∴∠DEB=90°,又∵E是BC的中点, ∴直线DE是线段BC的垂直平分线, ∴DC=BD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18, 故答案为18. 【点睛】
本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
16.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多
解析:66 【解析】 【分析】
首先根据正五边形的性质得到?EAB?108度,然后根据角平分线的定义得到
?PAB?54度,再利用三角形内角和定理得到?APB的度数. 【详解】
解:∵五边形ABCDE为正五边形, ∴?EAB?108度,
∵AP是?EAB的角平分线, ∴?PAB?54度, ∵?ABP?60?,
∴?APB?180??60??54??66?. 故答案为:66. 【点睛】
本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.
17.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面
解析:1 【解析】
试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=故答案为:1.
90??4,解得r=1. 180点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
解析:10 【解析】 【分析】
试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解. 【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2) =[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2) =(-2)2+2×3 =10 故答案为10 【点睛】
2ab+b2求解,整体思想的运用使运算更加简便. 本题考查了完全平方公式:(a±b)2=a2±
19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达
解析:20 【解析】 【分析】
根据图象横坐标的变化,问题可解. 【详解】
由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5 ∴矩形MNPQ的面积是20. 【点睛】
本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时, 要注意数形结合.
20.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形 解析:
4 3【解析】 【分析】
连接BD,根据中位线的性质得出EF//BD,且EF=到△BDC是直角三角形,求解即可. 【详解】 连接BD
1BD,进而根据勾股定理的逆定理得2QE,F分别是AB、AD的中点
?EF//BD,且EF=
1BD 2QEF?4 ?BD?8
又QBD?8,BC?10,CD?6
?△BDC是直角三角形,且?BDC=90? ?tanC=
BD84==. DC634故答案为:.
3
三、解答题
21.(1)2000,108;(2)作图见解析;(3)【解析】
试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可; (2)根据C组的人数,补全条形统计图;
(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率. 试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:为:2000,108; (2)条形统计图如下:
×360°=108°,故答案
.
(3)画树状图得:
∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:
=
.
考点:列表法与树状图法;扇形统计图;条形统计图. 22.(1) m=4,k=8,n=4;(2)△ABC的面积为4. 【解析】
试题分析:(1)由点A的纵坐标为2知OC=2,由OD=
OC知OD=1、CD=3,根据△ACD
的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;
(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得. 试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴, ∴OC=2,AC⊥y轴, ∵OD=OC, ∴OD=1, ∴CD=3,
∵△ACD的面积为6, ∴
CD?AC=6,
∴AC=4,即m=4,
则点A的坐标为(4,2),将其代入y=∵点B(2,n)在y=∴n=4;
(2)如图,过点B作BE⊥AC于点E,则BE=2,
的图象上,
可得k=8,