8字模型与飞镖模型 模型1:角的8字模型
如图所示,AC、BD相交于点O,连接AD、BC. 结论:∠A+∠D=∠B+∠C.
ADOBC
模型分析 证法一:
∵∠AOB是△AOD的外角,∴∠A+∠D=∠AOB.∵∠AOB是△BOC的外角, ∴∠B+∠C=∠AOB.∴∠A+∠D=∠B+∠C. 证法二:
∵∠A+∠D+∠AOD=180°,∴∠A+∠D=180°-∠AOD.∵∠B+∠C+∠BOC=180°, ∴∠B+∠C=180°-∠BOC.又∵∠AOD=∠BOC,∴∠A+∠D=∠B+∠C. (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.
模型实例
观察下列图形,计算角度:
(1)如图①,∠A+∠B+∠C+∠D+∠E=________;
AEBFC图①DECAABAEB1O2CDDBCF12GED图④
图图③
解法一:利用角的8字模型.如图③,连接CD.∵∠BOC是△BOE的外角, ∴∠B+∠E=∠BOC.∵∠BOC是△COD的外角,∴∠1+∠2=∠BOC. ∴∠B+∠E=∠1+∠2.(角的8字模型),∴∠A+∠B+∠ACE+∠ADB+∠E
=∠A+∠ACE+∠ADB+∠1+∠2=∠A+∠ACD+∠ADC=180°.
解法二:如图④,利用三角形外角和定理.∵∠1是△FCE的外角,∴∠1=∠C+∠E.
1
∵∠2是△GBD的外角,∴∠2=∠B+∠D.
∴∠A+∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°.
(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F=________.
ABCE图②DAO123PE图⑤BAOBFFQCDF12图⑥EDC
(2)解法一: 如图⑤,利用角的8字模型.∵∠AOP是△AOB的外角,∴∠A+∠B=∠AOP. ∵∠AOP是△OPQ的外角,∴∠1+∠3=∠AOP.∴∠A+∠B=∠1+∠3.①(角的8字模型),同理可证:∠C+∠D=∠1+∠2.② ,∠E+∠F=∠2+∠3.③
由①+②+③得:∠A+∠B+∠C+∠D+∠E+∠F=2(∠1+∠2+∠3)=360°.
解法二:利用角的8字模型.如图⑥,连接DE.∵∠AOE是△AOB的外角, ∴∠A+∠B=∠AOE.∵∠AOE是△OED的外角,∴∠1+∠2=∠AOE. ∴∠A+∠B=∠1+∠2.(角的8字模型)
∴∠A+∠B+∠C+∠ADC+∠FEB+∠F=∠1+∠2+∠C+∠ADC+∠FEB+∠F
=360°.(四边形内角和为360°) 练习:
1.(1)如图①,求:∠CAD+∠B+∠C+∠D+∠E= ;
ABOEBCCD图①图DAOE
解:如图,∵∠1=∠B+∠D,∠2=∠C+∠CAD,
∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:
2
(2)如图②,求:∠CAD+∠B+∠ACE+∠D+∠E= .
ABCD图②OE
解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D,
又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD+∠B+∠ACE+∠D+∠E
=180° 解法二:
2.如图,求:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= .
EFDGCHAB
解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,
∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°
解法二:
3
模型2:角的飞镖模型
如图所示,有结论:∠D=∠A+∠B+∠C.
AAAD312DBCBD4CB12图②
34图①C
模型分析
解法一:如图①,作射线AD.
∵∠3是△ABD的外角,∴∠3=∠B+∠1,∵∠4是△ACD的外角,∴∠4=∠C+∠2
∴∠BDC=∠3+∠4,∴∠BDC=∠B+∠1+∠2+∠C,∴∠BDC=∠BAC+∠B+∠C
解法二:如图②,连接BC.
∵∠2+∠4+∠D=180°,∴∠D=180°-(∠2+∠4)
∵∠1+∠2+∠3+∠4+∠A=180°,∴∠A+∠1+∠3=180°-(∠2+∠4) ∴∠D=∠A+∠1+∠3.
(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例
如图,在四边形ABCD中,AM、CM分别平分∠DAB和∠DCB,AM与CM交于M,探究∠AMC与∠B、∠D间的数量关系.
ADBMA1B342CDMC4
解答:利用角的飞镖模型
如图所示,连接DM并延长.∵∠3是△AMD的外角,∴∠3=∠1+∠ADM, ∵∠4是△CMD的外角,∴∠4=∠2+∠CDM,∵∠AMC=∠3+∠4 ∴∠AMC=∠1+∠ADM+∠CDM+∠2,∴∠AMC=∠1+∠2+∠ADC.(角的飞镖模型)
?BAD?BCD,?2?, 22360????B??ADC??BAD?BCD∴?AMC?∴?AMC???ADC(四边形???ADC,
222360???B??ADC内角和360°),∴?AMC?,∴2∠AMC+∠B-∠ADC=360°.
2∵AM、CM分别平分∠DAB和∠DCB,∴?1?
练习:
1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .
AE115°CBDF
【答案】230°
提示:∠C+∠E+∠D=∠EOC=115o.(飞镖模型),∠A+∠B+∠F=∠BOF=115o.
∠A+∠B+∠C+∠D+∠E+∠F=115o+115o=230o 2.如图,求∠A+∠B+∠C+∠D= .
D105°CD2105°143C115°115°ABAB
【答案】220°
提示:如图所示,连接BD.
∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C,
∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220o
模型3 边的“8”字模型
5