试求在P(1, ?2, 1)点处的梯度。 解 已知梯度???ex???????ey?ez,将标量函数?代入得 ?x?y?z???ex?2x?y?3??ey?4y?x?2??ez?6z?6?
再将P点的坐标代入,求得标量函数? 在P点处的梯度为 1-9 试证式(1-6-11)及式(1-6-12)。
证明 式(1-6-11)为???CA??C??A,该式左边为
????P?3ex?9ey
???CA????Ax?Ay?Az????CAx????CAy????CAz??C????C??A即 ???x?y?z?y?z???x???CA??C??A
式(1-6-12)为????A?????A?A???,该式左边为
????A?????Ax?????Ay?????Az? ?x?y?z?Ax?Ay?A?A????????x?Ay???Az??z ?x?x?y?y?z?z????A?A???; 即
????A?????A?A???
1-10 试求距离|r1?r2|在直角坐标、圆柱坐标及圆球坐标中的表示式。 解 在直角坐标系中
r1?r2??x2?x1?2??y2?y1?2??z2?z1?2
在圆柱坐标系中,已知x?rcos?,y?rsin?,z?z,因此
r1?r2??r2cos?2?r1cos?1?2??r2sin?2?r1sin?1?2??z2?z1?2
2?r22?r12?2r2r1cos??2??1???z2?z1?
在球坐标系中,已知x?rsin?cos?,y?rsin?sin?,z?rcos?,因此
r1?r2??r2sin?2cos?2?r1sin?1cos?1?2??r2sin?2sin?2?r1sin?1sin?1?2??r2cos?2?r1cos?1?2?r22?r12?2r2r1?sin?2sin?1cos??2??1??cos?2cos?1?
1-11 已知两个位置矢量r1及r2的终点坐标分别为(r1,?1,?1)及(r2,?2,?2),试证r1与r2之间的夹角??为
cos??sin?1sin?2cos(?1??2)?cos?1cos?2
6
证明 根据题意,两个位置矢量在直角坐标系中可表示为
r1?exr1sin?1cos?1?eyr1sin?1sin?1?ezr1cos?1 r2?exr2sin?2cos?2?eyr2sin?2sin?2?ezr2cos?2
已知两个矢量的标积为r1?r2?r1r2cos?,这里?为两个矢量的夹角。因此夹角?为
cos??r1?r2r 1r2式中
r1?r2?r1r2(sin?1cos?1sin?2cos?2?sin?1sin?1sin?2sin?2 ?cos?
1cos?2)r1r2?r1r2
因此,
cos??sin?1sin?2(cos?1cos?2?sin?1sin?2)?cos?1cos?2 ?sin?1sin?2cos(?1??2)?cos?1cos?
21-12试求分别满足方程式???f1(r)r??0及???f2(r)r??0的函数f1(r)及f2(r)。 解 在球坐标系中,为了满足
???f1?r?r????f1?r???r?f1?r???r?r?f1?r??r?3f1?r??0
即要求rdf1?r?df?r?dr?3f?r??0 ?1f??3dr1,求得
1?r?rlnf1?r???3lnr?lnC
即
fC1?r??r3 在球坐标系中,为了满足
???f2?r?r????f2?r???r?f2?r???r?0
由于??f2?r???r?0,??r?0,即上式恒为零。故f2?r?可以 是r的任意函数。
1-13 试证式(1-7-11)及式(1-7-12)。
证明 ①式(1-7-11)为???CA??C??A (C为常数) 令A?Axex?Ayey?Azez, CA?CAxex?CAyey?CAzez,则
7
exeyezexeyez???CA?????????x?y?z?C?x?y?z?C??A CAxCAyCAzAxAyAz②式(1-7-12)为????A?????A????A 令A?Axex?Ayey?Azez,?A??Axex??Ayey??Azez,则
exeyez????A??????x?y?z??????A??z????Ay??ex
?A??y?z?A?xy?Az??????x??A????z??A?????zx???ey????x??Ay???y??Ax???ez
??????????????????yAz??zAy???ex???????xAz??zAx??ey?????xA??y??yAx???ez?????A?z??Ay??e??Az?Ax???Ay?Ax???y?z??x?????x??z??ey?????x??e??y??z ????A????A
若将式(1-7-12)的右边展开,也可证明。
1-14 试证 ??r?0,????r??r??r???0及????r3???0。
证明 已知在球坐标系中,矢量A的旋度为
ere?e?r2sinrsin??A?????r??r???? ArrA?rsin?A?对于矢量r,因Ar?r,A??0,A??0,代入上式,且 因r与角度?,?无关,那么,由上式获知??r?0。
对于矢量rr,因A,A,显然????r?r?1??0,A??0?r???0。对于矢量
rr3,因Ar?1r2,A??0,A??0,同理获知 ????r??r3???0。 1-15 若C为常数,A及k为常矢量,试证:
8
① ?eck?r?Ckeck?r; ② ??(Aeck?r)?Ck?Aeck?r;
③ ??(Aeck?r)?Ck?Aeck?r。
证明 ①证明?eCk?r?CkeCk?r。 利用公式?F????F??????,则
?eCk?r?eCk?r??Ck?r??CeCk?r??k?r?
而??k?r????kxx?kyy?kzz??exkx?eyky?ezkz?k 求得
?eCk?r?CkeCk?r。
②证明???AeCk?r??Ck?AeCk?r。
利用公式????A?????A?A???,则
???AeCk?r??A???eCk?r??eCk?r??A?A???eCk?r?
再利用①的结果,则
???AeCk?r??Ck?AeCk?r
③证明???AeCk?r??Ck?AeCk?r。
利用公式????A?????A????A,则
???AeCk?r????eCk?r??A?eCk?r??A???eCk?r??A
再利用①的结果,则
???AeCk?r??Ck?AeCk?r。
1-16 试证 ?2???e?kr????ke?kr2rr,式中k为常数。 ??证明 已知在球坐标系中
1??2?2??2???1?????1??r2?r??r?r???r2sin?????sin??????r2sin2???2 则
?2???e?kr?1??2??e?kr??1??2?1?krk?kr???r????r2?r?r??r???r??????r2?r??r???r2e?re????
?1??kr?12er?r??ekr?kre?kr???kr?kr2r2???k?e??1?kr????k?e??kr 9
即
?kr?e?kr?2e???r???kr ??211-17 试证 (??E)?E?(E??)E??|E|2
2证明 利用公式
??A?B???A???B??B???A?A????B??B????A?
令上式中的A?B?E,则
?E?2?E???E?2E????E??2?E???E?2???E??E
2将上式整理后,即得
???E??E??E???E?1?E2。
21-18 已知矢量场F的散度??F?q?(r),旋度??F?0,试求该矢量场。 解 根据亥姆霍兹定理,F?r????Φ?r????A?r?,其中
Φ?r??14????F?r??1???dVAr?;?V?r?r?4????F?r???V?r?r?dV?
当??F?0时,则A?r??0,即F?r????Φ?r?。那么因??F?q??r?,求得
Φ?r??14?q??r??q?dV? ?V?r?r?4?r则
F?r????Φ?r??qe 2r4?r?2?1-19 已知某点在圆柱坐标系中的位置为?4, ?, 3?,试求该点在相应的直角坐标系及圆
?3?球坐标系中的位置。
解 已知直角坐标系和圆柱坐标系坐标变量之间的转换关系为
x?rcos?,y?rsin?,z?z
因此,该点在直角坐标下的位置为
?2?x?4cos??3??2????2; y?4sin???3???23; ?z = 3
同样,根据球坐标系和直角坐标系坐标变量之间的转换关系,
x2?y2y;??arctan r?x?y?z;??arctanxz222可得该点在球坐标下的位置为
4r?5; ??arctan?53?;
3
??120?
10