1
1ex(x?1)?1xxf(x)?e??,导数符号由e(x?1)?1确定,设g(x)?e(x?1)?1,
x?1x?1'xg'(x)?(x?2)ex?0,g(x)在??1,???单调递增,又知g(0)?0,?x???1,0?,g(x)?0,即f'(x)?0,
f(x)单调递减,?x??0,??,g(x)?0,即f'(x)?0,f(x)单调递增;
(2)设g(m)??ln(x?m)?e,g(m)单调递减,使g(m)?0,只需g(m)min?g(2)?e?ln(x?2)?0,令h(x)?e?ln(x?2),则h(x)?e?xxx'x11(x??2),h''(x)?ex??0,?h'(x)单调递增,2x?2(x?2)h'(x)?0至多有一个实数根,h'(?1)?0,h'(0)?0,?h'(x)?0有且只有一个实数根x0,x0满足
ex0?1x,?h(x)在??2,x0?单调递减,在?x0,???单调递增,h(x)min?h(x0)=e0?ln(x0?2) x0?2(x0?1)211?x0?0。当m?2时,有ln(x?m)?ln(x?2), ?lne??x0==
x0?2x0?2x0?2?f(x)?ex?ln(x?m)?ex?ln(x?2)?h(x)min?0。
秒杀题型五:含两个参数(字母)(双变量) 秒杀思路:双变量化?变量(途径:主要设t?1.(高考题改编)已知函数f?x??2lnx?x?(1)讨论f?x?的单调性; (2)若a?0,b?0,证明:ab?2a,a、b为变量,如a、b大小不确定,则规定其大小。) b1. xa?ba?b.(著名的对数均值不等式) ?..........lna?lnb2??x?1?【解析】:(1)f(x)??0,?f(x)在x??0,???上单调递减; 2x'aa?b,两边同除以ab,得1?,t?1,ablnb1t?t,等价于:2lnt?t?1?0,令g(t)?2lnt?t?1,由(1)知g(t)单调递减,则不等式化简为:1?
tt2lnt(2)左:变形为:ab?ab?ba,设a?b?0,令t?alnb?g(t)?g(1)?0;
2
1
aa?1?1aa?ba?bbb右:变形为,两边同除以b,得,设a?b?0,令u?,u?1,则不等式??aab22lnlnbbu?1u?12(u?1)2(u?1)?u?1??0,
化简为:,等价于:lnu???0,令h(u)?lnu??0,h'(u)?2lnu2u?1u?1u?u?1?2?h(u)单调递增?h(u)?h(1)?0。
ex?m,g(x)?m(lnx?x). 2.(高考题改编)已知函数f(x)?x(1)设函数F(x)?f(x)?g(x),若x?1是函数F(x)的唯一极值点,求实数m的取值范围; (2)若函数h(x)?xf(x)有两个零点x1,x2,证明:h?(x1)?h?(x2)?0.
exx?1ex?m?m(lnx?x),可得F?(x)?(?m)(x?0),∵函数F(x)有唯一极值点【解析】由F(x)?xxxexexexex(x?1),当0?x?1时,x?1,∴?m?0,即?m恒成立,设c(x)?(x?0),则c?(x)?2xxxxc?(x)?0,函数c(x)单调递减;当x?1时,c?(x)?0,函数c(x)单调递增,所以c(x)min?c(1)?e,所
以m?e,即实数m的取值范围是(??,e].
(2)h(x)?xf(x)?e?mx(x?0),∵x1,x2是函数h(x)的两个零点,∴exx1?mx1,ex2?mx2,∴
ex1?ex2ex1?ex2x1x2x1x2x1x2,∴h?(x1)?h?(x2)?e?m?e?m?e?e?2m?e?e?2?.要证m?x1?x2x1?x2ex1?ex2ex1?ex2x1x2h?(x1)?h?(x2)?0,即证e?e?2??0.设x1?x2,则e?e?2??0等价于
x1?x2x1?x2x1x2(x1?x2)(ex1?ex2)?2(ex1?ex2)?0,即证(x1?x2)(ex1?x2?1)?2(ex1?x2?1)?0,
令t?x1?x2,且t?0,即证t(e?1)?2(e?1)?0,则m(t)?t(e?1)?2(e?1)(t?0),
t则m?(t)?(t?1)e?1,t?0,令?(t)?(t?1)e?1,则??(t)?te?0,
tttttt故?(t)?m?(t)在(0,??)上单调递增,故m?(t)?m?(0)?0,所以函数m(t)在(0,??)上单调递增,所以
m(t)?m(0)?0.即t(et?1)?2(et?1)?0对任意t?0恒成立,所以h?(x1)?h?(x2)?0.
2
1
秒杀题型六:含两个变量(双变量)
秒杀思路:分离变量,转化为f?x1??(?,?,?)g?x2?型,共四类: ①f?x1?(x1任意)?g?x2?(x2任意)?f?x1?min?g?x2?max; ②f?x1?(x1存在)?g?x2?(x2任意)?f?x1?max?g?x2?max; ③f?x1?(x1任意)?g?x2?(x2存在)?f?x1?min?g?x2?min; ④f?x1?(x1存在)?g?x2?(x2存在)?f?x1?max?g?x2?min。 1.(高考题改编)f(x)??x?3x?1,g(x)?xlnx?都有f(x1)?g(x2).
【解析】:原不等式为:?x1?3x1?1?x2lnx2?33a.求证:对任意x1,x2??0,???,且对任意a?1,xaa3?x2lnx2?x1?3x1?1,?h(a)单调,设h(a)?x2x2递增,h(a)?0,只需h(1)?1133?x2lnx2?x1?3x1?1?0,?x2lnx2??x1?3x1?1?f?x1?,即只需x2x2令m(x2)?11?x2lnx2,m'(x2)??2?lnx2?1,?m'(1)?0,?导数属于超越函数可代特值型,令x2x2n(x2)??121'?lnx?1n(x)???0,?m'(x2)单调递增,?m?x2?在x2??0,1?单调递减,,2223x2x2x22???单调递增,?m?x2?min?m(1)?1,f'?x1???3x1?3??3?x1?1??x1?1?,当x1??0,1?时,在x2??1,f?x1?单调递增,当x1??1,???时,f?x1?单调递减,?f?x1?max?f(1)?1,?f?x1?max?m?x2?min,原
不等式成立。
秒杀题型七:数列与函数综合不等式
秒杀思路:构造函数证明数列不等式,一般规律是第一问中的函数就是所要构造的函数,若第一问求参数的范围,一般情况参数取边界值的函数是所要造的函数。 1.(2013年新课标全国卷II21)已知函数f(x)?(1)判断函数f(x)的单调性;
lnx(x?1). x?1???上恒成立?若存在,求出a的取值范(2)是否存在实数a,使得关于x的不等式lnx?a(x?1)在?1,2
1
围;若不存在,试说明理由; (3)证明:ln(1?2?3??????n)?n?n?1?(n?N,n?2). 2【解析】:(1)f(x)?'1?1?lnx1x,导数符号由g(x)?1??lnx确定,g(1)?0属于超越函数可代特2x?x?1?值型,g(x)?调递减。
'1?x'''?f(x)?f(x)?f(1)?0,?f(x)在x??1,???单??x?1,??,在单调递减,?02x11?ax?x?1?, ?a?xx(2)法一:直接讨论法:令h(x)?lnx?a?x?1?,h(x)?''①当a?1时,h(x)?0,h(x)在x??1,???单调递减,?h(x)?h(1)?0,不等式成立; ②当0?a?1时,h(x)在x??1,不等式不恒成立;
③当a?0时,h(x)在x??1,???单调递增,?h(x)?h(1)?0,不等式不成立。
综合①②③知a?1。
(3)由(2)知当a?1,有不等式lnx?x?1, 赋值:ln1?1?1?0,
?1??1??1????单调递减,在x??,当x??1,?时,h(x)?h(1)?0,?单调递增,
aaa??????ln2?2?1?1, ln3?3?1?2,
???
lnn?n?1;
累加得:ln1?ln2?ln3?????lnn?ln(1?2?3??????n)?0?1?2?????????n?1??2.(2017年新课标全国卷II21)已知函数f(x)?ax?ax?xlnx,且f(x)?0. (1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e?2n?n?1?。
22?f?x0??2?2.
【解析】(:1)因为f(x)?x?ax?a?lnx??0,令g?x??ax?a?lnx,则g?1??0,x?0,?ax?a?lnx?0.
2
1
g??x??a?1ax?1,当a?0时,g??x??0,g?x?单调递减,但g?1??0,x?1时,g?x??0(舍去); ?xx111.当0?x?时,g??x??0,g?x?单调减;当x?时,g??x??0,g?x?单
aaa?1??1??1?调增.若0?a?1,则g?x?在?1,?上单调减,g???g?1??0;若a?1,则g?x?在?,1?上单调增,
?a??a??a??1??1?g???g?1??0;若a?1,则g?x?min?g???g?1??0,g(x)?0.综上,a?1.
?a??a?当a?0时,令g??x??0,得x?法二:由f(1)?0,而f(x)?0,?f(1)?0,即f(1)?2a?a?1?0,?a?1。 法三:分离变量法:a?x?1??lnx,讨论x,利用洛必达法则可得. (2)f(x)?2x?2?lnx,x?0.令h?x??2x?2?lnx,则h??x??2?令h??x??0得x?'''12x?1,x?0. ?xx111,当0?x?时,h??x??0,h?x?单调递减;当x?时,h??x??0,h?x?单调递增.
222?1??1??1?h?2??2?ln2?0,所以,因为h?e?2??2e?2?0, h?x?min?h???1?2?ln2?0.e?2??0,?,2??,???,
222???????1??1??1??1?所以在?0,?和?,???上,h?x?即f??x?各有一个零点.设f??x?在?0,?和?,???上的零点分别为
?2??2??2??2?1?1?x0,x2,因为f??x?在?0,?上单调减,所以当0?x?x0时,f??x??0,f?x?单调增;当x0?x?时,
2?2?1?1?f??x??0,f?x?单调减.因此,x0是f?x?的极大值点.因为,f??x?在?,所以当?x?x2???上单调增,
2?2?时,f??x??0,f?x?单调减,x?x2时,f?x?单调增,因此x2是f?x?的极小值点.所以,f?x?有唯一1??的极大值点x0.由前面的证明可知,x0??e?2,?,则f?x0??fe?2?e?4?e?2?e?2.
2?????1?2(或利用f(x0)?fe?e直接证明书)因为(设而不求整体代换法)f??x0??2x0?2?lnx0?0,所以
??lnx0?2x0?2,则又f?x0??x02?x0?x0?2x0?2??x0?x02,因为0?x0?e?2?f?x0??
11,所以f?x0??.因此,241. 42