(2)
2???,B?,?A?,366?△ABC为等腰三角形,且AC?BCx设AC?x,则MC?(x?0)2?AM2?AC2?CM2?2AC?CM?cosCC??T?x??2x24?2?x?11?(?)2272x,得x?2412??S4?AC?BC?sin23?13?2?2??223
19.解:
(1)m?4?3?12点(a,b)在y?x?1上,?b?a?1?A?{(1,0),(2,1),(3,2)}?n?331?P(A)???m?12124(2)方程x2?2mx?n2?0有实根?4m2?4n2?0,?m2?n2?0又?m??0,3?,n??0,2??m?n?0?作图:
1(1?3)?22?P(B)?2?2?33?方程x2?2mx?n2?0有实根20.解:
(1)f(x)?kx,(k?0)代入(1,0,4)得k?0.4,?f(x)?0.4x(x?0)g(x)?k?x代入(1,0,1),得k??0.1?g(b)?0.1x(x?0)(2).设20万元中x万元投资A项目,可获利润y万元。?y?0.4x?0.1?(20?x)(0?x?10)设x?t,则x?t2,t?0,20???y??0.1t2?0.4t?20.4 当t???2时,ymax?2.4?0.2此时x?22?4所以4万元投资A项目,16万元投资B项目收益大约2.4万元。21.解:
(1)焦点在x轴中,且c?1,?q?2,c2?a2?a2?2,c2?1,b2?1?y?12(2)当l的斜率k不存在不符合题意当k存在时,设l:y?k(x-1),即y?kx-k?将y?kx-k代入x2?2y2?2而(1?2k2)x2?4k2?2k2?2?0设A(x,y)B4k2?x1?x2?1?2k2?y?k??k1又??,得k?2?x?y?011??22(3)圆过(0,0),(1,0),且与x?2相切113?圆心在直线x?上,且y?2??2221设圆心为(,t)2?AB方程为y?13?()2?t2??t??222129?该方程为(x?)?(y?2)2?24129或(x?)?(y?2)2?24x2