学习必备 欢迎下载
只有盆地的下降速度与沉积速度大致相当时有机质才有可能大量堆积和保存,才有利于有机质转化为油气。这种大地构造环境主要分布在:板块的边缘活动带,板块内部的裂谷、坳陷,造山带的前陆盆地、山间盆地。
(2)岩相古地理环境
丰富有机质的堆积和保存石油气生成的基本前提,这首先取决于生物的大量繁殖,其次取决于周围的氧化还原环境。
A.在海盆里,从海岸线到广海区,依次分为滨海、浅海大陆架、大陆坡和深海平原。滨海区和深海区都不利于有机质的堆积和保存。唯有浅海区水深、阳光、温度适宜,生物繁盛,特别是近三角洲地带,是与生物大量繁殖,并接受河流搬运来的大量陆源有机质,有机质异常丰富的聚集。有机质的大量存在,消耗水中的氧,形成还原环境,保证了剩余有机质和新补充的有机质免受分解破坏。大陆架上的泻湖、海湾以及闭塞的深海盆地等也是良好的低能还原环境,既有利于有机质的堆积,又有利于有机质的保存,是良好的生油区。
B.内陆湖泊从边缘向中心亦可划分为滨湖—沼泽区、浅湖区、半深湖区和深湖区几个地带。最有力的生油环境是半深湖——深湖区。那里水体较深,水体表层处于动荡回流状态,其底部水流停滞,由于水底有机质的分解,氧气又得不到及时补充,便形成稳定的还原环境,是有利的生油区。 6. 天然气可划分哪些成因类型?有哪些特征?
天然气按成因可分为四种类型: 生物成因气、油型气、煤型气 和无机成因。
一、生物成因气,在成岩作用阶段因微生物化学作用而形成,化学组成以甲烷为主,含量高于98%,重烃含量小于0.2%,为典型的干气;δ13C值一般为-55‰~-90‰。
二、油型气,有机质在深成作用阶段热力作用下以及石油热裂解形成,化学成分重烃含量大于5%,最高可达40%—50%,过成熟气以甲烷为主,δ13C值随成熟度增高而增大,从-55‰~-35‰。
三、煤型气,是煤系地层中的有机质在热演化过程中而生成的。化学组成重烃含量可达10%以上,甲
烷一般占70%—95%,含有非烃成分;δ13C值一般为-41.‰~-24.9‰。
四、无机成因气,由地壳内部、深海大断裂、深海沉积物形成,化学组成甲烷占优势,非烃含量较高;13
δC值大于-20‰。 7.试述生油理论的发展。
(1)未熟—低熟油形成机理:
a.未熟—低熟油:指所有非干酪根晚期热降解成因的各种低温早熟的非常规油气,包括在生物甲烷气生烃高峰之后,在埋藏升温达到干酪根晚期热降解大量生油之前,经由不同生烃机制的低温生物化学反应生成并释放出来的液态和气态烃。
b.未熟—低熟油的成因包括:树脂体早期生烃、木栓质体早期生烃、细菌改造陆源有机质早期生烃、高等植物蜡质早期成烃、藻类类脂物早期生烃和富硫大分子有机质早期降解生烃等。
树脂体早期生烃:树脂酸作为含羧基的非烃生物类脂物,其化学成分、分子结构及聚合程度都比干酪根简单的多,树脂酸脱羧基、加氢转化成环烷烃的化学反应所必需的活化能和热力条件也较干酪根热降解生烃的条件低得多,因此当干酪根尚处于未熟——低熟阶段时树脂体可能在低温条件下率先早期成烃。
木栓质体早期生烃:木栓脂作为木栓质体的前生物,具有低聚合度和多长链类脂物的特点,决定了木栓质体可在低的热力学条件下发生低活化能的化学反应,生成并释放以链状结构为主的烃类。
细菌改造陆源有机质早期生烃:沉积物沉积——成岩过程中,在适宜的介质环境条件下,大量陆源有机质的存在可以为细菌繁衍提供充足的碳源和能源,而细菌作用的结果又对陆源有机质进行降解改造,细菌类脂物成分代谢产物的加入可反过来改造陆源有机质的结构,增加其H/C原子比,提高富氢程度和“腐泥化程度”,并使有机质热降解或热解聚、脱官能团与加氢生烃反应所需要的活化能降低,从而有利于生成低熟油气。
高等植物蜡质早期成烃:蜡质所含的羧基、羟基和酮基官能团的长链化合物经脱官能团形成原油中的C22+正构烷烃,这类化学反应过程无需高活化能,可在低温阶段完成。
藻类类脂物早期生烃:藻的生物类脂物均属于分子结构简单的含氧官能团的非烃化合物及部分烃类,未发生明显的聚合作用,只要具备还原性的沉积——成岩条件,在低温化学反应阶段即可转化成链烷烃和环烷烃,成为低熟油的主要组成成分。
富硫大分子有机质早期降解生烃:在早期成岩阶段,沉积盆地水体咸化至硫酸盐相阶段无机硫与有机分子的加成反应形成富硫大分子有机质,而干酪根早期低温降解作用使S-S键和S-C键优先断裂可以使富硫大分子有机质形成低熟油。
学习必备 欢迎下载
(2)腐殖煤的成烃机理
a.煤成烃:煤系地层的有机质在不同的演化阶段,其富氢组分所生成的气态和液态烃类。煤究竟生气还是生油及其生成液烃的能力大小,与煤的类型和显微组分组成密切相关。煤中主要显微组分的生油(烃)能力从大到小的顺序为壳质组、镜质组、惰质组。
b.煤的成烃模式:沥青化作用是煤的显微组分的主要演化途径,其结果一方面是产生石油和天然气,一方面是固体残余物进行芳构化和缩聚作用。煤中不同显微组分沥青化作用是不一致的。由于煤中个显微组分发生沥青化作用的时期不同,其生烃特征和演化模式存在差异,造成煤中液态烃的生成具有多阶段性,因此不同演化阶段各种显微组分对生烃的贡献有别。 8.评价生油岩质量的主要指标。
(1)有机质丰度,常用指标有有机碳、氯仿沥青“A”、总烃,一般这些指标高,丰度高。
(2)有机质的类型,常用的指标有化学分析法,采用H/C和O/C原子比绘制相关图,即范氏图(Van Krevelen图)来判断;热解资料的氢指数和氧指数;有机质的显微组分;生物标志化合物来确定。Ⅰ型、Ⅱ型干酪根为主要生油母质,Ⅲ型干酪根为主要生气源岩。
(3)有机质的成熟度,可用镜质体反射、孢粉和干酪根颜色、岩石热解资料、正烷烃奇偶优势来确定,颜色越深,Ro大于0.5%,CPI值接近1为成熟源岩。
(4)有机质的转化指标,采用氯仿沥青/有机碳、总烃/有机碳、总烃/氯仿沥青、饱和烃/芳烃、总烃/非烃等比值可以进一步了解有机质的转化率。
9. 油源对比的基本原则是什么?目前常用的油源对比的指标有哪几类?
A、油源对比原则
对比的原则:性质相同的两种油气应源于同一母岩;母岩排出的石油应与母岩中残留的石油相同,实际上油气在运移过程中会受到各种因素的影响,因此,相似即同源。
B、常用对比指标
a.正烷烃分布曲线: 将原油与生油岩的正构烷烃分布曲线进行比较,曲线基本接近则可能存在油源关系,如根本不相同则没有油源亲缘关系。
b.微量元素:常用钒和镍,V/Ni<1为陆相环境,V/Ni>1为海相环境,而且,V/Ni随年代越老,比值越小,可能由于V较Ni不稳定。
c.生物标志化合物:比较卟啉、异戊二烯烷烃或甾、萜化合物的相对含量,有亲缘关系的原油与生油岩的同一化合物相对含量相似。
d.碳同位素:对比碳同位素类型曲线,若原油的饱和烃、芳烃、非烃和沥青质的δ13C值的延长线落在生油岩干酪根的δ13C值上及其附近,偏离值在5‰之内,则可认定二者有良好的亲缘关系。
C、意义
油源对比包括油—岩、油—油、气—气、油—气岩的对比,实际上地化对比的核心问题就是油—岩和气—岩的对比以及天然气的成因分类。其主要意义是:查明盆地内含油层与生油层的关系,确定生储盖组合的产能及分布特征;了解油气运移的方向和途径。
第五章 石油及天然气运移
一、名词解释
1.油气运移:指石油、天然气在某种自然动 力的驱使下在地壳中发生位置的转移。
2.油气初次运移:是指生油层中生成的石油和天然气,从生油层向储集层(或输导层)中的运移。是油气脱离烃源岩的过程,又称为排烃。
3.油气二次运移:指油气脱离生油岩后,在孔隙度、渗透率较大的储集层中或大的断裂、不整合面中的传导过程,它包括聚集起来的油气由于外界条件的变化而引起的再次运移。
4.异常(高)地层压力:地层中孔隙流体由于各种原因,使得流体压力偏离静水压力,这种地层压力称为异常地层压力。
5.排烃效率: 是指烃源岩排出烃的质量与生烃的质量百分比。
6.生油(烃源)岩有效排烃厚度: 生油层中只有与储集层相接触的一定距离内的烃类才能排出来,这段厚度就是生油层排烃的有效厚度。 二、问答题
1. 论述油气初次运移的主要动力因素。
学习必备 欢迎下载
①压实作用:是沉积物在上覆沉积负荷作用下,沉积物致密程度增大的地质现象,在压实作用过程中,沉积物通过不断排出孔隙流体,孔隙度不断减少。在正常压实过程中,当烃源岩生成的油、气溶解在孔隙水中,就能够随着孔隙水一起被压实排出,实现油气的初次运移。如果排水不畅,造成欠压实,可以延缓孔隙流体的排出,如果流体的排出正好被推迟到主要生油时期,则将对油气初次运移起到积极作用。还有利于有机质的热成熟,也是驱使油气进行初次运移的潜在动力。 ②热力作用:由于埋藏深度的增加,孔隙体积膨胀远远小于孔隙流体的膨胀,造成异常高压,为油气运移提供了一个动力。
③烃类及非烃气体生成的作用:干酪根在热降解生成石油和甲烷气体等烃类的同时,也产生大量的水和非烃气体(主要是CO2),而这些流体的体积大大超过原来干酪根的体积,引起页岩孔隙流体压力大幅度的提高,使异常高压进一步增强,这种压力的增加将导致微裂缝的产生,使石油进入渗透性的载岩和储集层。
④粘土矿物的脱水作用:泥岩在埋藏过程中,随着深度的增加,粘土矿物要发生成岩作用,放出大量的层间水,在没有增大的孔隙体积中造成异常高压,也是油气运移的一个动力。
⑤扩散作用:以浓度差为驱动的动力因素,油气以扩散作用向外排出。 2. 论述异常高压产生的原因及在油气藏形成中的作用。
产生原因:欠压实作用、热增压作用、有机质生烃作用和蒙脱石的脱水作用。
作用:欠压实所造成的异常高压,可以延缓孔隙流体的排出,如果流体的排出正好被推迟到主要生油时期,则将对油气初次运移起到积极作用。异常高压使更多的水较长时间处于较高温度压力下,有利于有机质的热成熟,也是驱使油气进行初次运移的潜在动力。还有利于石油在水中的溶解,对油气的运移有利。若是非生油岩,异常高压起到封盖的作用。
3. 油气初次运移的相态有哪些?其相态演变方式。
(1)油气初次运移相态包括:a.水溶相运移指油气被水溶解成溶液,水作为油气运移的载体进行运移,包括分子溶液和胶体溶液运移。b.游离相运移是油气呈游离的油相从烃源岩中渗流排出,当孔隙中含油饱和度很低时就呈分散状油相运移,饱和度高时就呈连续油相运移,连续油相运移,还包括气溶于油和油溶于气的情况。此外,分子扩散是分子本身自由运动的结果,扩散作用是天然气运移中的有效方式。 (2)相态演变方式:①对于泥质烃源岩来讲,在埋藏较浅的未成熟阶段,由于石油还未大量生成而地层孔隙度又较大,此时烃源岩中含油饱和度很低只可能有水相运移,对于富含Ⅲ型干酪根的腐殖型源岩来说,因为烃源岩以产气为主,多以游离相进行初次运移;进入大量生油的成熟阶段后,一方面生油量大大增加,另一方面孔隙度又较小,源岩中的含油饱和度变大以致超过临界运移饱和度而发生连续油相运移;随着源岩进一步埋深,在较高温度下,演化进入高成熟的湿气阶段,此时石油可以呈气溶相运移;再往深处石油发生热裂解产生大量甲烷气体,可以产生游离气相和扩散相运移。所以初次运移相态随埋深的演变规律主要是水溶相—油相—气溶相。②对于碳酸盐岩来讲,油气多在具备排烃动力后以游离相排出。 4. 解释油气初次运移的途径及方式。
油气初次运移的通道有烃源岩中的孔隙系统、裂缝系统、孔隙裂缝网络。运移方式取决于动力因素。初次运移的主要动力是压力差和浓度差,压力差包括正常压实和欠压实的异常高压。对应于上述的动力因素,油气初次运移有三种方式:正常压实排烃模式是在正常压实作用下,油气溶解于水中,通过孔隙系统被压实出来;异常压力排烃模式是在异常高压作用下,若不足以引起岩石产生微裂缝,则油气通过孔隙慢慢已连续方式排出,若岩石产生微裂缝,则油气以游离态通过微裂缝排出;扩散模式,由浓度差驱动,通过孔隙和裂缝系统排出烃。
5. 油气二次运移中质点的受力情况(即运移机理)。
在油气二次运移中,对于单位质量的油气质点受到以下4个力的作用:垂直向下的重力、垂直向上的浮力、水动力和油气在孔隙介质中运移所受的毛细管阻力。油气二次运移还应具备以下两个必要条件,首先必须具有一定的油气饱和度,只有当油气饱和度大于临界油气饱和度时,才有相对渗透率和有效渗透率。其次,油柱必须大于临界油柱高度,具有足够的浮力和水动力来克服毛细管阻力。
油气经过初次运移进入储层时可能是分散的游离状态,这时油气数量少,体积小,所受驱动力不大,不足于克服毛细管压力差的阻碍,因此微小的油滴将处于停滞不动的状态。随着初次运移的持续进行,油
学习必备 欢迎下载
滴增大,逐渐成丝连片,总的驱动力也越来越大。此外,烃类物质从烃源岩进入储集层时压力降低,溶有气体的石油体积增大、密度降低、驱动力增加,即所谓溶解气效应。这两个原因,使烃类驱动力逐渐增大,直到驱动力大于毛细管压力差时,便发生二次运移。 6. 油气二次运移的通道及疏导体系有哪些?
(1) 孔隙系统:渗透性岩石的孔隙系统是最广泛、最基本的二次运移通道。在静水条件下,油气微滴可能从渗透性岩层底部向顶部累积,当累积到一定数量后,便可在层内发生侧向的顺层运移。
(2)断层和裂缝面:断层既可作为油气的遮挡条件而造成断层圈闭,也可成为油气二次运移的通道,特别在穿层和垂向运移中具有独特的作用。
(3) 裂缝系统:裂缝系统对于改善孔隙间的连通性和渗透性,尤其对于改善致密岩石的渗透性具有重要意义。构造裂缝边缘平直,具有一定的方向和组系,往往不受层面限制,延伸较远,是穿层运移的主要通道;成岩裂缝的特点是受层理限制,多平行层面,形状不规划,缝面有弯曲,是储集层内运移的重要通道。碳酸盐岩中裂缝是重要的二次运移通道。
(4)不整合面:不整合面分布具有区域性,故它对于油气作远距离运移具有特别重要的意义。它能把不同时代、不同岩性的地层勾通起来。因此,是垂向穿层运移的重要通道。 7. 试述油气二次运移的方向取决于哪些因素。
油、气、水的力场分布对油气二次运移的方向起着直接控制作用。油气势差是二次运移的动力源。油气二次运移受到三个力的作用,即浮力、水动力和毛细管阻力差,油气二次运移的方向取决于这三个力的合力。
在含油气盆地中,如果在静水条件下,油气主要沿着浮力方向运移,在动水条件下,则沿着浮力和水动力的合力方向,所以油气二次运移总的来说是垂直向上的,当受到遮挡时,则沿着上倾方向,具体的运移路线是沿着各种通道的最小阻力方向。
在沉积盆地中,生油区一般位于凹陷的最深处,与之相邻的斜坡和隆起是二次运移的主要指向。具体的运移路线是沿着各种通道的最小阻力方向,它受储层的岩性变化、地层不整合以及断层分布等因素的控制和影响。因此,油气二次运移的方向取决于古构造形态、储集层的储集物性及盆地的演化特征。 8. 根据油气二次运移的机理分析含油气盆地中有利的远景区。
①油气二次运移的机理是:油气二次运移受到三个力的作用,即浮力、水动力和毛细管阻力差,油气二次运移的方向取决于这三个力的合力。
②在含油气盆地中,如果在静水条件下,油气主要沿着浮力方向运移,在动水条件下,则沿着浮力和水动力的合力方向,所以油气二次运移总的来说是垂直向上的,当受到遮挡时,则沿着上倾方向,而具体的运移路线又是沿着各种通道的最小阻力方向。
③在沉积盆地中,生油区一般位于凹陷的最深处,与之相邻的斜坡和隆起是二次运移的主要指向。而具体的运移路线又是沿着各种通道的最小阻力方向,它受储层的岩性变化、地层不整合以及断层分布等因素的控制和影响。因此,位于凹陷附近的隆起带及斜坡带,特别是长期继承性隆起带中良好储层常常控制着油气的初始分布。这些位置即为盆地中的有利含油远景区。构造运动常可使地层发生褶皱断裂,改变其原有产状,引起油气的再分布。掌握盆地构造现有格局和历史发展,可以预测油气的区域分布。
9. 油气二次运移中油气性质的变化。
a.色层效应:使石油的胶质、沥青质、卟啉及钒镍等重金属减少,轻组分相对增多,在烃类中烷烃增多,芳烃相对减少,烷烃中低分子烃相对增多,高分子烃相对减少。反映到物理性质上,表现为密度变小、颜色变淡、粘度变稀。
b.氧化作用:可使石油的胶状物质增加,轻组分相对减少,环烷烃增加,烷烃和芳烃相对减少,密度、粘度也随之加大,其效果大致与色层效应相反。
第六章 油气藏的形成
一、名词解释
1.油气聚集:指油气在储层中由高势区向低势区运移的过程中遇到圈闭时,进入其中的油气就不能继续运移,而聚集起来形成油气藏的过程。
学习必备 欢迎下载
2.成烃坳陷: 是指地质历史时期曾经是广阔的有利于有机质大量繁殖和保存的封闭或半封闭的沉积区。
3.(有利)生储盖组合:生储盖组合是指烃源层、储集层、盖层三者的组合型式。有利生储盖组合是指三者在时、空上配置恰当,有良好的输导层,使烃源层生成的油气能及时地运移到储集层聚集,盖层的质量和厚度能确保油气不致于散失。
4.有效圈闭: 是指在具有油气来源的前提下,能聚集并保存油气的圈闭。 5.临界温度:液体能维持液相的最高温度称为该物质的临界温度。 6.临界压力:在临界温度时该物质气体液化所需要的最低压力。 二、问答题
1.试述油气差异聚集的条件、特点及意义。(根据油气差异聚集的原理论述盆地中石油和天然气的分布)
条件:静水条件下,在油气运移的主方向上存在一系列溢出点自下倾方向向上倾方向递升的圈闭,油气源充足,盖层封闭能力足够大。
原理:静水条件下,如果在油气运移的主方向上存在一系列溢出点自下倾方向向上倾方向递升的圈闭,当油气源充足和盖层封闭能力足够大时,油气首先进入运移路线上位置最低的圈闭,由于密度差使圈闭中气居上,油居中,水在底部,当第一个圈闭被油气充满时,继续进入的气可以通过排替作用在圈闭中聚集,直到整个圈闭被气充满为止,而排出的油通过溢出点向上倾的圈闭中聚集;若油气源充足,上述过程相继在更高的圈闭中发生;若油气源不足时,上倾方向(距油源较远)的圈闭则不产油气,仅产水,称为空圈闭。所以在系列圈闭中出现自上倾方向的空圈闭向下倾方向变为纯油藏→油气藏→纯气藏的油气分布特征。
特征:在系列圈闭中出现自上倾方向的空圈闭向下倾方向变为纯油藏→油气藏→纯气藏的油气分布特征。
意义:根据油气差异聚集的规律,可以预测盆地中油气藏的分布特征,在坳陷中主要分布油藏,隆起的高点为气藏,斜坡部位为油气藏。
2. 论述油气藏形成的主要条件。
①油气源条件:盆地中油气源是油气藏形成的首要条件,油气源是否丰富取决于成烃拗陷的大小,烃源岩的成烃条件和成烃演化史。要具有足够大的成烃拗陷,生油岩的面积要大,厚度要厚;生油岩的质量要好,有机质丰度高,类型好,要达到成熟。
②生、储、盖组合和传输条件:储集层的储集物性好,孔隙结构好;要具备良好的生、储、盖组合形式,最佳的生油岩厚度,最佳的砂泥岩百分比。
③圈闭条件:圈闭容积要大,形成时间要早,距油源近,闭合高度要高,盖层封闭能力好。
④保存条件:构造运动不要太强烈或地下水活动不活跃,保证圈闭容积不改变或不破坏,圈闭中的油气不受氧化变质。
3. 试述生储盖组合的类型及形成大型油气藏必须具备的生储盖组合条件。
根据生、储层在时间和空间上的分布和接触关系,可将生储盖组合分为两大类:连续的或相邻的生储盖组合、不连续的或间断的生储盖组合。连续的生储盖组合包括:面接触,包括上覆式、下伏式、互层式;带接触(也称侧变式或指状交叉式);体接触(也称封闭式或透镜式)。不连续生储盖组合可分为不整合型生储盖组合和断裂型生储盖组合。
在实际情况下,单一型式的生储盖组合往往很局限,输导油气的能力也有限,而更多的是多种型式联合形成复合的输导网络,因此,复合型的生储盖组合对大型油气藏的形成更为有利。有利生储盖组合要求三者在时、空上配置恰当,有良好的输导层,使烃源层生成的油气能及时地运移到储集层聚集,盖层的质量和厚度能确保油气不致于散失。 4. 简述凝析气藏形成的基本条件。
①在烃类物系中气体数量必须胜过液体数量才。
②地层埋藏较深,地层温度介于烃类物系的临界温度与临界凝结温度之间,地层压力超过该温度时的露点压力。
5. 简述油气藏形成时间的确定方法。