高中数学必修二 第一章 空间几何体 1.1空间几何体的结构 1、棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱ABCDE?A'B'C'D'E'
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
'''''表示:用各顶点字母,如五棱锥P?ABCDE
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相
似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如四棱台ABCD—A'B'C'D'
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
4、圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
※空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴
1.2空间几何体的三视图和直观图 1、中心投影与平行投影
中心投影:把光由一点向外散射形成的投影叫做中心投影。 平行投影:在一束平行光照射下形成的投影叫做平行投影。
2、三视图
正视图:从前往后 侧视图:从左往右 俯视图:从上往下
画三视图的原则:长对齐、高对齐、宽相等 3、直观图:斜二测画法 斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。
用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3空间几何体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
'(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)
S直棱柱侧面积?chS正棱台侧面积?1(c1?c2)h'2
S圆柱侧S1S?S??rl?2?rh正棱锥侧面积2ch' 圆锥侧面积 ?(r?R)?l 圆台侧面积
S圆锥表??r?r?l?S圆柱表?2?r?r?l?S圆台表???r2?rl?Rl?R2?
(3)柱体、锥体、台体的体积公式
V柱?Sh
V圆柱?Sh??rh243?R球3(4)球体的表面积和体积公式:V=
1V台?(S'?S'S?S)h3
11V圆台?(S'?S'S?S)h??(r2?rR?R2)h33
1V锥?Sh3
1V圆锥??r2h3
; S球面=4?R
2
第二章 点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系
?平面:公理1:如果一条直线上的两点在一个平面内,那么这条直线在
此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只 只有一条过改点的公共直线
?线线关系:1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点; 共面直线
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线
a∥b =>a∥c c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都 适用。
公理4作用:判断空间两条直线平行的依据 ?线面位置关系
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α 4、面面关系
平行——没有公共点;α∥β
相交——有一条公共直线。α∩β=b
2.2直线、平面平行的判定及其性质 1、线面平行判定