21a
故点D到平面ACE的距离为7.????????????????4分
25.(1)由题意知抛物线C的焦点(p,0)在直线l上,
2p?p?0得p?1, 所以
2y因此,抛物线C的方程为?4x.?????????????????4分 2l:x?my?1?0,C:y?4x. (2)由(1)知
设A(x1,y1),B(x2,y2),则由
?x?my?1?0?2?y?4x 消去x,得 y2?4my?4?0 根据韦达定理得
①
y1?y2?4m,y1y2??4
②
2x?x?4m?2,x1x2?1 12从而
③????????????????????2分
y2(,y)再设抛物线C上的点M4,则
????????y2y2MA?(x1?,y1?y),MB?(x2?,y2?y)44,由MA⊥MB知
22yy????????(x?)(x?)?(y1?y)(y2?y)?0MA?MB?0,即1424?????????2分
14y2y?(x1?x2)?x1x2?y2?y(y1?y2)?y1y2?04从而得16,
将②,③两式代入上式,并整理得
12(y?4)?(my?2)216,??????????????????????1分
2y所以?4??4(my?2).??????????????????????1分
11
22y?4?4(my?2)y当时,可得?4my?4?0,它与方程①相同,
表明M点为A或B点,不合题意,舍去.???????????????1分
22当y?4??4(my?2)时,可得y?4my?12?0, 22由判别式??16m?48?0,得m?3,
即m?3或m??3 所以m?(??,?3]?[3,??).?????????????????3分
12