第二十一章曲线积分与曲面积分
§1第一型曲线积分与曲面积分
1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。解:第一型曲线积分的性质:1?(线性性)设?f(x,y,z)ds,?g(x,y,z)ds存在,k1,k2是实常数,则LL??k
L1f(x,y,z)?k2g(x,y,z)?ds存在,且LL??k
L1f(x,y,z)?k2g(x,y,z)?ds?k1?f(x,y,z)ds?k2?g(x,y,z)ds;L2??1ds?l,其中l为曲线L的长度;L3?(可加性)设L由L1与L2衔接而成,且L1与L2只有一个公共点,则?f(x,y,z)ds存在??L1f(x,y,z)ds与?f(x,y,z)ds均存在,且L2?
4?Lf(x,y,z)ds?
?
L1f(x,y,z)ds+?f(x,y,z)ds;L2(单调性)若?
Lf(x,y,z)ds与L?
Lg(x,y,z)ds均存在,且在L上的每一点p都有f(p)?g(p),则?f(p)ds??g(p)ds;L5?若?f(p)ds存在,则?f(p)ds亦存在,且LL??
Lf(p)ds?
?
Lf(p)ds
6?(中值定理)设L是光滑曲线,f(p)在L上连续,则存在p0?L,使得Lf(p)ds?f(p0)l,l是L的长度;第一型曲面积分的性质:设S是光滑曲面,??f(p)ds,??g(p)ds均存在,则有SSS1?(线性性)设k1,k2是实常数,则???k1f(p)?k2g(p)?ds存在,且???k
S1f(p)?k2g(p)?ds?k1??f(p)ds?k2??g(p)ds;SS2??1ds?s,其中s为S的面积;SS3?(可加性)若S由S1,S2组成S?S1?S2,且S1,S2除边界外不相交,则??f(p)ds存在?
??f(p)ds与??f(p)ds均存在,且S1S2??f(p)ds=??f(p)ds+??f(p)ds
SS1S24?(单调性)若在S上的的每一点p均有f(p)?g(p),则??f(p)ds???g(p)ds;SS5???
Sf(p)ds也存在,且??f(p)ds???
SSf(p)ds;6?(中值定理)若f(p)在S上连续,则存在p0?S,使得??f(p)ds?f(p
S0)s,其中s为S的面积。2.计算下列第一型曲线积分(1)?
L(x2?y2)ds,其中L是以(0,0),(2,0),(0,1)为顶点的三角形;解:L?L1?L2?L3L1:x?0,0?y?1L2:y?0,0?x?2L3:y?1?
所以x
,0?x?22L11?
L(x2?y2)ds=?(x2?y2)ds
222?
L2(x2?y2)ds
2?
L3(x2?y2)dsx??2?
2??ydy??xdx??
000?2??x??1?
????5dx??2??
?3?
(2)553?
Lx2?y2ds,其中L是圆周x2?y2?ax;(a?0)aaa
?cos?;y?sin?,0???2?222aaa22则x'??sin?,y'?cos?,ds?x'?y'd??d?222所以解:L的参数方程为:x?
?
La2??aa2??a?22?1?cos?????sin??d??x?yds=?20?22???2?
2?a2?????2???0cosd????cosd???2a2?22?
22?
2?0cosd?2?(3)?
Lxyzds,其中L为螺线x?acost,y?asint,z?bt(0?a?b),0?t?2?;解:x'??asint,y'?acost,z'?bds?x'2?y'2?z'2dt?a2?b2dt
所以?
Lxyzds??a2btcostsint?a2?b2dt
02??aba?b??
(4)222?
2?0a2ba2?b2tcostsintdt?
2?
2?0tsin2tdt
?2aba2?b22?
L(x2?y2?z2)ds,其中L与(3)相同;解:?(x
L432?y?z)ds=a?b
43232222??2?023?8?32?2a?btdt?a?b??2?a?3b??
??
222?22(5)?(x
L?y)ds,其中L为摆线x?y?a;
3323解:L1的参数方程为:x?acost,y?asint,
则0?t?
?2x'??3acos2tsint,y'?3asin2tcost
ds?x'2?y'2dt?3asintcostdt,由对称性所以?(x
L43?y)ds=4?(x?y)ds
L173434343?3a
(6)?
?20(1?cos2t)sin2tdt?4a.
273?
Ly2ds,其中L为摆线的一拱,x?a(t?sint),y?a(1?cost),0?t?2?;x'?a(1?cost),y'?asint,ds?2asin
所以解:?
Lyds?2a
23?
2?0(1?cost)sin
2t2563dt?a215tdt2(7)?
Lxyds,其中L为球面x2?y2?z2?a2与平面x?y?z?0的交线;解:注意到L关于x,y,z的对称性,有?
Lxyds??yzds??zxds
LL所以?
Lxyds?
11
(xy?yz?zx)ds?(x?y?z)2?(x2?y2?z2)ds??3L6L??1a2222???(x?y?z)ds??
6L613ds???a?L3(8)?(xy?yz?zx)ds,其中L同(7);L解:?
L(xy?yz?zx)ds?
1
(x?y?z)2?(x2?y2?z2)ds?2L??a2??
2(9)?ds???a
L3?
Lxyzds,其中L是曲线x?t,y?
2t,z'?t
1221
2t3,z?t2(0?t?1);32解:x'?1,y'?
所以ds?
x'2?y'2?z'2dt?1?2t?t2dt?(1?t)dt
132121622t?2t?t?(1?t)dt?=xyzds?03?L2143(10)?
L2y2?z2ds,其中L是x2?y2?z2?a2与x?y相交的圆周;?
x?y
,?
解:L的参数方程是?
22z??a?2y?
22a?y?a22ds?x'2?y'2?z'2dy?
2aa2?2y22dy,2y2?z2?a2y?
所以?
L2y?zds?2a
22?
2a2dy
22asin?20a
?y22=2a
2?
?20d?(令y?
22asin?)??a23.计算下列第一型曲面积分:(1)??(x
SS2?y2)ds,其中S是立体x2?y2?z?1的边界曲面;2解:??(x
?y2)ds=??(x2?y2)ds+??(x2?y2)ds
S1S2其中S1是锥面z?x2?y2,x2?y2?1,而S2是平面z?1,x2?y2?1.22所以S1与S2在xoy面上的投影区域均为D:x?y?1.对22(x?y)ds,??S1221?zx?zy?2对??(x
S22?y2)ds,221?zx?zy?1
所以22223(x?y)ds?(x?y)2dxdy?2d?r??????dr?S1D002?1?222223(x?y)ds?(x?y)dxdy?d?r??????dr?S2D002?1?2所以22(x?y)ds???S?(1?2)2(2)ds222,其中S为柱面x?y?R被平面z?0和z?H所截取的部分;??22Sx?y
R2?y2,?R?y?R,0?z?H
221?x?y?x??z解:前半柱面S1的方程为x?
所以x?y??
yR2?y2,x?z?0,
2RR2?y2后半柱面S2的方程为x??R?y,?R?y?R,0?z?H所以x?y?
2yR2?y2,x?z?0,1?x?y?x??z22RR2?y2dsdsds
=+??????222222x?yx?yx?yS1S2S?
(3)RdydzRdydz11?????2R2?y2D??R2R2?y2DyzRyz?
2H
??H?2?RR??
Sx3y2zds,其中S是曲面z?x2?y2被平面z?1割下部分;2222解:1?zx?zy?1?4(x?y),
所以Dxy:x2?y2?1
??x
S3y2zds???x3y2(x2?y2)?1?4(x2?y2)dxdy
D???
2?0cos?sin?d??r81?4r2dr
32018182r1?4rdr?0152(4)??zds,其中S是螺旋面的一部分:x?ucosv,y?usinv,z?v(0?u?a,0?v?2?)
S?xu解:??x
?vyuyvzu??cosvsinv0???????zv???usinvucosv1??
2222222所以E?xu?yu?zu?1,G?xv?yv?zv?u?1