中学数学教师招聘考试专业知识复习资料
一、复习要求(由于招考题目仅为高考知识,所以本内容以均为高考知识点)
1、 理解集合及表示法,掌握子集,全集与补集,子集与并集的定义; 2、 掌握含绝对值不等式及一元二次不等式的解法;
3、 理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法; 4、 理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;
5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。 二、学习指导 1、集合的概念:
(1) 集合中元素特征,确定性,互异性,无序性; (2) 集合的分类:
① 按元素个数分:有限集,无限集;
②按元素特征分;数集,点集。如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线; (3) 集合的表示法:
①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:
(1) 元素与集合的关系,用?或?表示;
(2)集合与集合的关系,用?,??,=表示,当A?B时,称A是B的子集;当A??B时,称A是B的真子集。
3、集合运算
(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},CUA={x|x∈U,且x?A},集合U表示全集;
(2) 运算律,如A∩(B∪C)=(A∩B)∪(A∩C),CU(A∩B)=(CUA)
∪(CUB),
CU(A∪B)=(CUA)∩(CUB)等。 4、命题:
(1) 命题分类:真命题与假命题,简单命题与复合命题; (2) 复合命题的形式:p且q,p或q,非p;
(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。 (3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。其中互为逆否的两个命题同真假,即等价。因此,四种命题为真的个数只能是偶数个。
5、 充分条件与必要条件
(1)定义:对命题“若p则q”而言,当它是真命题时,p是q的充分条件,q是p的必要条件,当它的逆命题为真时,q是p的充分条件,p是q的必要条件,两种命题均为真时,称p是q的充要条件;
(2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。从集合角度看,若记满足条件p的所有对象组成集合A,满足条件q的所有对象组成集合B,则当A?B时,p是q的充分条件。B?A时,p是q的必要条件。A=B时,p是q的充要条件; (3) 当p和q互为充要时,体现了命题等价转换的思想。 6、 反证法是中学数学的重要方法。会用反证法证明一些代数命题。 7、集合概念及其基本理论是近代数学最基本的内容之一。学会用集合的思想处理数学问题。
函 数
一、复习要求
7、 函数的定义及通性; 2、函数性质的运用。 二、学习指导 1、函数的概念:
(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f:A→B,f表示对应法则,b=f(a)。若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。既是单射又是满射的映射称为一一映射。 (2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三
要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。逆过来,值域也会限制定义域。
求函数定义域,通过解关于自变量的不等式(组)来实现的。要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。理解函数定义域,应紧密联系对应法则。函数定义域是研究函数性质的基础和前提。
函数对应法则通常表现为表格,解析式和图象。其中解析式是最常见的表现形式。求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合法。
求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。
在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。
2、函数的通性
(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如
f(?x)?f(x)?0,
f(?x)。 ??1(f(x)≠0)
f(x)奇偶性的几何意义是两种特殊的图象对称。
函数的奇偶性是定义域上的普遍性质,定义式是定义域上的恒等式。 利用奇偶性的运算性质可以简化判断奇偶性的步骤。
(2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。
判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则。
函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。 函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。
(3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。
中学数学教师招聘考试专业知识复习资料
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)