3A0B2 C2D3
14.曲线y?ex?(x?1)4的凹区间是()
???; 0?;B?0,A???,1?;D???,??? C???,15.函数y?x4?2x2?5在区间[?2,2]上的最大值为()
A4;B0; C13;D3 二.填空题 x3?2x2?11.lim?__________. x??(x?1)(2x?1)2x2.当x?0时,1?cos2x与asin2为等价无穷小,则a?_______. 23.若?f(x)edx?e?C,则?f(x)dx? 4.?131x1x dxx?x3? 5.lim1?cos2x= x?0xsinx三.判断题 1.y?ln1?x是奇函数.() 1?x2.设f(x)在开区间?a,b?上连续,则f(x)在?a,b?上存在最大值、最小值.() 3.若函数f(x)在x0处连续,则f(x)在x0处极限存在.() 4.函数f(x)在(a,b)内连续,则f(x)在(a,b)内必有界.() 5.??aa2?x2dx??a2(a?0).() 四.解答题 1.求lim(1?)2x?5
x??a1xx2?1x2(). 2.求xlim???x2?1
3.求limsinmx,其中m,n为自然数.
x??sinnx4.求?cos(2?3x)dx. 5.比较大小?10xdx,?x2dx.
01?12?sinx,x?06.设f(x)??x,求f?(x)
??x?1,x?07.计算?0xsinxdx. 8.计算?sinx?cosxdx sinx?cosx??9.设f(x)在?0,1?上具有二阶连续导数,若f(?)?2,?[f(x)?f??(x)]sinxdx?5,求f(0).
0.
《高等数学》答案35 考试日期:2004年7月14日星期三考试时间:120分钟 一.选择题 1.B2.D3.A4.D5.C6.C7.A8.A9.D10.B11.C12.A13.B14.D15.C 二.填空题 11?1.2.43.?C4.5.2 4x6三.判断题 1.T2.F3.T4.F5.F 四.解答题 1.e?2
x2?1x2(2)?e?2 2.xlim???x?13.令t?x??,limsinmxsin(mt?m?)m?lim?(?1)m?n
x??sinnxt?0sin(nt?n?)n
4.
?cos(2?3x)dx??1cos(2?3x)d(2?3x)3?1??sin(2?3x)?C311
5.?0xdx??0x2dx
?sinx22??2cosx,x?0?x2???f(x)??1,x?06.
?不存在,x?0???7.解:?0xsinxdx.??8.?? sinx?cosx1dx???d(sinx?cosx)??lnsinx?cosx?C sinx?cosxsinx?cosx???9.解:?f(x)sinxdx??f(x)d(?cosx)?f(?)?f(0)??f??(x)sinxdx 000所以f(0)?3