相对论 (关于时空和引力的基本理论)
相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。
狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发展了牛顿力学,推动物理学发展到一个新的高度。
狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程
广义相对论
1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1]
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。[2]
1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根
据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。[3] 1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。
1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。[2] 理论分野
传统上,在爱因斯坦刚刚提出相对论的初期,人们以所讨论的问题是否涉及非惯性参考系来作为狭义与广义相对论分类的标志。随着相对论理论的发展,这种分类方法越来越显出其缺点——参考系是跟观察者有关的,以这样一个相对的物理对象来划分物理理论,被认为较不能反映问题的本质。一般认为,狭义与广义相对论的区别在于所讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力作用或者引力作用可以忽略的问题,而广义相对论则是讨论有引力作用时的物理学的。用相对论的语言来说,就是狭义相对论的背景时空是平直的,即四维平凡流型配以闵氏度规,其曲率张量为零,又称闵氏时空;而广义相对论的背景时空则是弯曲的,其曲率张量不为零。[4] 基本原理编辑 狭义相对论的基本原理
一、在任何惯性参考系中,自然规律都相同,称为相对性原理。 二、在任何惯性系中,真空光速c都相同,即光速不变原理。
其中第一条就是相对性原理,第二条是光速不变性。整个狭义相对论就建筑在这两条基本原理上。由此得出时间和空间各量从一个惯性系变换到另一惯性系时,应该满足洛伦兹变换,而不是满足伽利略变换。并由此推出许多重要结论,例如:
1、两事件发生的先后或是否“同时”,在不同参照系看来是不同的(但因果律仍然成立)。
2、量度物体的长度时,将测到运动物体在其运动方向上的长度要比静止时缩短。与此相似,量度时间进程时,将看到运动的时钟要比静止的时钟进行得慢。 3、物体质量m随速度v的增加而增大。 4、任何物体的速度不能超过光速。
5、物体的质量m与能量E之间满足质能关系式E=mc2。
以上结论与目前的实验事实符合,但只有在高速运动时,效应才显著。在通常的情况下,相对论效应极其微小,因此经典力学可认为是相对论力学在低速情况下的近似。[13]
广义相对论基本原理
1、广义相对论原理,即自然定律在任何参考系中都可以表示为相同数学形式。
2、等价原理,即在一个小体积范围内的万有引力和某一加速系统中的惯性力相互等效。 按照上述原理,万有引力的产生是由于物质的存在和一定的分布状况使时间空间性质变得不均匀(所谓时空弯曲);并由此建立了引力场理论;而狭义相对论则是广义相对论在引力场很弱时的特殊情况。[14] 研究结果编辑
相对论的一个非常重要的结果是质量与能量之间的关系。爱因斯坦假设,光速对每个人来说应该显得是相同的,这意味着没有什么能移动得比光更快。事实上,随着能量被用于使一颗粒子或者一艘宇宙飞船加速,这种对象的质量就会增加,使它更难于增加任何速度。使这颗粒子的速度增加到与光速一样是不可能的,因为这需要无穷的能量,爱因斯坦的著名方程式E=mc2 总结了质量和能量的这种等效--这或许是在街头得到承认的唯一物理学方程式。
这个定律的后果之一是,如果一个铀原子的核裂变(分裂)成两个全部质量略小的核,就能释放巨大的能量。1939年,随着第二次世界大战的临近,一群认识到这一点的含义的科学家说服爱因斯坦克服其和平主义犹豫,给罗斯福总统写了一封信,敦促美国开始实行一项核研究计划。这导致曼哈顿计划以及1945年在广岛上空爆炸的原子弹的问世。一些人把原子弹归咎于爱因斯坦,因为他发现了质量与能量之间的关系。但是,这就像因为造成飞机坠毁的引力而责备牛顿。爱因斯坦没有参与曼哈顿计划,并且对摧毁广岛的核爆炸感到震惊。
虽然相对论非常符合支配电学和磁学的定律,但它不符合牛顿的万有引力定律。牛顿定律说,如果你改变某个空间区域的物质分布,你就会立即感觉到宇宙中别处的引力