好文档 - 专业文书写作范文服务资料分享网站

空间中直线与直线之间的位置关系 说课稿 教案 教学设计

天下 分享 时间: 加入收藏 我要投稿 点赞

空间中直线与直线之间的位置关系

一、教材分析

空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 二、教学目标

1.知识与技能

(1)了解空间中两条直线的位置关系;

(2)理解异面直线的概念、画法,培养学生的空间想象能力; (3)理解并掌握公理4; (4)理解并掌握等角公理;

(5)异面直线所成角的定义、范围及应用。 2.过程与方法

让学生在学习过程中不断归纳整理所学知识. 3.情感、态度与价值

让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣. 三、重点难点

两直线异面的判定方法,以及两异面直线所成角的求法. 四、课时安排 1课时 五、教学设计 (一)导入新课

思路1.(情境导入)

在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系.

学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.

教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直

1

线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.

思路2.(事例导入)

观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?

图1

(二)推进新课、新知探究、提出问题

①什么叫做异面直线?

②总结空间中直线与直线的位置关系. ③两异面直线的画法.

④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?

⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?

活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.

②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:

??相交直线:同一平面内,有且只有一个公共点;共面直线?? ??平行直线:同一平面内,没有公共点;??异面直线:不同在任何一个平面内,没有公共点.③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.

2

图2

④组织学生思考:

长方体ABCD—A′B′C′D′中,如图1, BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.

公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a∥b,b∥c?a∥c.

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.

⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢? 可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.

图3

针对这个定义,我们来思考两个问题.

问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?

答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这

3

样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).

图4

问题2:这个定义与平面内两相交直线所成角是否矛盾?

答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.

⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).

图5

(三)应用示例

思路1

例1 如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

图6

求证:四边形EFGH是平行四边形.

证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=同理,FG∥BD,且FG=

1BD. 21BD. 24

所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形. 变式训练

1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD. 求证:四边形EFGH是菱形.

证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=同理,FG∥BD,EF∥AC,且FG=

1BD. 211BD,EF=AC. 22所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形. 因为AC=BD,所以EF=EH. 所以四边形EFGH为菱形.

2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC⊥BD. 求证:四边形EFGH是正方形.

证明:连接EH,因为EH是△ABD的中位线, 所以EH∥BD,且EH=

1BD. 211BD,EF=AC. 22同理,FG∥BD,EF∥AC,且FG=

所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形. 因为AC=BD,所以EF=EH.

因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH.

所以四边形EFGH为正方形.

点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.

例2 如图7,已知正方体ABCD—A′B′C′D′.

图7

5

空间中直线与直线之间的位置关系 说课稿 教案 教学设计

空间中直线与直线之间的位置关系一、教材分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角
推荐度:
点击下载文档文档为doc格式
64f1n72qrl02tjb2ixwe3xy6q955p4014vi
领取福利

微信扫码领取福利

微信扫码分享