42=2x?x2?x2?c
3535x2?4(3)?dx
x?2x2?41答案:?dx=?(x-2)dx=x2?2x?c
x?22(4)
1?1?2xdx
答案:
1111?d(1-2x)==dx?ln1?2x?c ??1?2x221?2x2(5)x2?xdx
?3211222答案:?x2?xdx=?2?xd(2?x)=(2?x)2?c
32(6)
?sinxxdx
答案:
?sinxxdx=2?sinxdx=?2cosx?c
(7)xsin?xdx 2答案:xsin?xxdx=?2?xdcosdx 22xxxx?2?cosdx=?2xcos?4sin?c
2222=?2xcos(8)ln(x?1)dx 答案:ln(x?1)dx==(x?1)ln(x?1)?2.计算下列定积分 (1)
???ln(x?1)d(x?1)
?(x?1)dln(x?1)=(x?1)ln(x?1)?x?c
?2?11?xdx
2答案:
??11?xdx=
?1?1(1?x)dx+
?21(x?1)dx=(x?6
121152x)?1?(x2?x)1=
222(2)
?21edx 2x21x答案:
?1121exdx?ed==?ex2?1xx1x1121=e?e
(3)
?e31x1?lnxdx
e3答案:
?e31x1?lnx1dx=?111d(1?lnx)=2(1?lnx)21?lnxe31=2
?(4)
?20xcos2xdx
????11112答案:?2xcos2xdx=?2xdsin2x=xsin2x0??2sin2xdx=?
0222024(5)
?e1xlnxdx
ee21e1212exlnxdx=?1lnxdx=xlnx1??1xdlnx=(e2?1)
422答案:
?01(6)
?4(1?xe?x)dx
4?x0答案:
?(1?xe)dx=x??xde=3?xe0414?x?x40??0e?xdx=5?5e?4
4作业三
(一)填空题
?104?5???________.答案:3 1.设矩阵A?3?232,则A的元素a23?__________????216?1??T2.设A,B均为3阶矩阵,且A?B??3,则?2AB=________. 答案:?72
3. 设A,B均为n阶矩阵,则等式(A?B)?A?2AB?B成立的充分必要条件是 .答案:
222AB?BA
4. 设A,B均为n阶矩阵,(I?B)可逆,则矩阵A?BX?X的解X?______________. 答案:(I?B)?1A
7
??1?100?????15. 设矩阵A?020,则A?__________.答案:A??0?????00?3???0??0120?0??0? ?1??3??(二)单项选择题
1. 以下结论或等式正确的是( ).
A.若A,B均为零矩阵,则有A?B
B.若AB?AC,且A?O,则B?C
C.对角矩阵是对称矩阵
D.若A?O,B?O,则AB?O答案C
2. 设A为3?4矩阵,B为5?2矩阵,且乘积矩阵ACBT有意义,则CT为( A.2?4 B.4?2
C.3?5 D.5?3 答案A
3. 设A,B均为n阶可逆矩阵,则下列等式成立的是( ). A.(A?B)?1?A?1?B?1, B.(A?B)?1?A?1?B?1
C.AB?BA D.AB?BA 答案C 4. 下列矩阵可逆的是( ).
?123???10 A.??023? B.??1?101? ?????003????123?? C.??11??11?00? D.????22?? 答案A
?222?5. 矩阵A???333?的秩是( ). ?444????A.0 B.1 C.2 D.3 答案B
三、解答题 1.计算
(1)???21??01??1?2?53?????10??=??35??
8
)矩阵.` (2)??02??11??0?0?3????00????0??00?? ??3?(3)??1254??0???=?0?
??1??2???2.计算?123???122????124?143??245???60?
??????1??1?32???23?1????3?27???23???124??245解 ?1??122??????7197??20???7120???6??32???1433?1????61?????1???2???3?27????0?4?7????3?5152? =??1110?
?3?2?14??????3.设矩阵A??23?1??123??111?,B??112?,求AB。
?11?????0????011??解 因为AB?AB
23?1232A?111?112?(?1)2?3(?1)2210?1012?2
0?1123123B?112?0-1-1?0
011011所以AB?AB?2?0?0
?124?4.设矩阵A???2?1?,确定?的值,使r(A)最小。 ?110????答
案
9
45?10??27???
:
?124??A??2?1????110??24??1(2)?(1)?(?2)??0??4?7?(3)?(1)?(?1)???0?1?4??24??1?(2)(3)?0?1?4????0??4?7???12?7(3)?(2)?(?)?0?14?90????4当???4??4?
?0??9时,r(A)?2达到最小值。 4?2?5321??5?8543??的秩。 5.求矩阵A???1?7420???4?1123??答
案
:
?2?532?5?854A???1?742??4?1121?3??0??3?(1)(3)?1?742?5?854??2?532??4?1120?3??1??3?420??1?7(2)?(1)?(?5)??027?15?63?(3)?(1)?(?2)??09?5?21?(4)?(1)?(?4)??027?15?63??42?1?7?1?027?15?6(3)?(2)?(?)003?00(4)?(2)?(?1)?00?006.求下列矩阵的逆矩阵:
0?3??r(A)?2。 0??0??1?32???
1(1)A??30???1?1??1?答
案
?1?32100??(AI)???301010???1?1001??1?2100??1?3(2)?(3)?2??0?11112????04?3?101??2100??1?3(2)?(1)?3??0?97310?(3)?(1)?(?1)???04?3?101???1?32100?(3)?(2)?4??0?11112????001349?? 10