习题8-1
1. 设有一平面薄片,在xOy平面上形成闭区域D,它在点(x,y)处的面密度为μ(x,y),且μ(x,y)在D连续,试用二重积分表示该薄片的质量. 解:m????(x,y)d?.
D2. 试比较下列二重积分的大小:
(1) ??(x?y)2dσ与??(x?y)3dσ,其中D由x轴、y轴及直线x+y=1围成;
DD(2)
?ln(x?y)??dσ,其中D是以A(1,0),B(1,1),C(2,0)为顶点??ln(x?y)dσ与???D2D的三角形闭区域.
23解:(1)在D内,0?x?y?1,故?x?y???x?y?,??(x?y)2d????(x?y)3d?.
DD (2) 在D内,1?x?y?2,故0?ln(x?y)?1,从而ln(x?y)?ln2(x?y),
习题8-2
1. 画出积分区域,并计算下列二重积分:
(1) ??(x?y)dσ,其中D为矩形闭区域:x?1,y?1;
D2ln(x?y)d??[ln(x?y)]d? ????DD(2) (3) (4) (5) (6)
??(3x?2y)dσ,其中D是由两坐标轴及直线x+y=2所围成的闭区域;
D??(xDD2?y2?x)dσ,其中D是由直线y=2,y=x,y=2x所围成的闭区域;
222xydσ,其中D是半圆形闭区域:x+y≤4,x≥0; ????xlnydσ,其中D为:0≤x≤4,1≤y≤e;
Dx2dσ其中D是由曲线xy?1,x?1,y?x所围成的闭区域. ??2y2D111D?1?1?1解:(1) ??(x?y)d???dx?(x?y)dy??2xdx?0. (2) ??(3x?2y)d???dx?D022?x0(3x?2y)dy??[3x(2?x)?(2?x)2]dx
0222202 ??[?2x2?2x?4]dx??x3?x2?4x?.
030319y332?y)dy (3) ??(x?y?x)d???dy?y(x?y?x)dx??(002482D222y222
19413213y?y?. 96806D (4) 因为被积函数是关于y的奇函数,且D关于x轴对称,所以??x2yd??0.
4e4ee4 (5) ??xlnyd???dx?xlnydy??x(ylny?lny)dx?e?1x2?2(e?1).
0102110D (6) ??D11122411x21x2xxx3xdx??1(x?x)dx?(?)1?9. d???1dx?x2dy???12xy2464y22y2x2
2. 将二重积分??f(x,y)dσ化为二次积分(两种次序)其中积分区域D分别如下:
D(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;
(2) 由直线y=x及抛物线y2=4x所围成的闭区域;
1(3) 由直线y=x,x=2及双曲线y?所围成的闭区域;
x(4) 由曲线y=x2及y=1所围成的闭区域. 解:(1) ?dx?f(x,y)dy??dx?0011x22?x0f(x,y)dy??dy?012?yyf(x,y)dx.
(2) ?dx?01242xx2f(x,y)dy??dy?10221y4yy2f(x,y)dx.
2x14(3) ?1dy?1f(x,y)dx??dy?f(x,y)dx??dx?1f(x,y)dy.
yx(4) ?dx?2f(x,y)dy??dy??1x0111y?yf(x,y)dx.
22y3. 交换下列二次积分的积分次序:
(1) ?dy?f(x,y)dx; (2)?dy?2f(x,y)dx;
000y1y (3) ?dx?110elnx0yf(x,y)dy; (4) ?dy?f(x,y)dx??dy?001110x12y33?y0f(x,y)dx.
解:(1) ?dy?f(x,y)dx??dx?f(x,y)dy.
0(2) ?dy?2f(x,y)dx??dx?xf(x,y)dy.
0y022y4x(3) ?dx?1elnx02yf(x,y)dy??dy?yf(x,y)dx
0e12e(4) ?dy?010f(x,y)dx??dy?133?y0f(x,y)dx??dx?x023?xf(x,y)dy.
24. 求由平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积.
11137解:V??dx?(6?2x?3y)dy??(6?2x?)dx?.
000225. 求由平面x=0,y=0,x+y=1所围成的柱体被平面z=0及曲面x2+y2=6-z截得的立体体积.
11?x1(1?x)334222解:V??dx?(6?x?y)dy??[6(1?x)?(1?x)x?)dx?.
000312
习题8-3
1. 画出积分区域,把二重积分??f(x,y)dσ化为极坐标系下的二次积分,其中积分区域D
D是:
(1) x2+y2≤a2 (a>0); (2) x2+y2≤2x;
(3) 1≤x2+y2≤4; (4) 0≤y≤1-x,0≤x≤1. 解:(1) (2) (3) (4)
??Df(x,y)d???d??f(rcos?,rsin?)rdr.
002?a??Df(x,y)d???2?d???2?2cos?0f(rcos?,rsin?)rdr.
??DDf(x,y)d???d??f(rcos?,rsin?)rdr.
012?2??f(x,y)d????20d??1cos??sin?0f(rcos?,rsin?)rdr.
2. 把下列积分化为极坐标形式,并计算积分值:
(1)
?a0dy?a2?y20(x2?y2)dx;
a2?y222(2)
?20?10dx?2x2?y2dx;
xx解:(1)
24831x122244sin?(2) ?dx?2x?ydx??d??rdr??d?
0x030cos6????21?co?s1114144 ???d(co?s?)?[d(?co?s)d4?0cos?30cos6?3?0cos6??1cos?5?cos?3?42(2?1)?)?. ??(?353450000?ady?(x?y)dx??d???sin?cos2?0a?a4?a4. rdr???3??( cos)]3. 在极坐标系下计算下列二重积分:
22(1)??ex?ydσ,其中D是圆形闭区域: x2+y2≤1;
D(2) 区域;
(3)
??ln(1?xD2?y2)dσ,其中D是由圆周x2+y2=1及坐标轴所围成的在第一象限内的闭
??arctanDydσ,其中D是由圆周x2+y2=1,x2+y2=4及直线y=0,y=x所围成的在第一x象限内的闭区域;
(4)
??DR2?x2?y2dσ其中D由圆周x2+y2=Rx(R>0)所围成.
2解:(1) ??exD?y22?12121d???d??errdr?2??er??(e?1).
0020(2)
??ln(1?xD2?y)d???2?201r3?r221d??ln(1?r)rdr?[ln(1?r)??dr] 212022001?r21r(1?r)?r?? ?[ln2?2?dr]?(2ln2?1). 2401?r4??2222y4(3) ??arctand???d??arctan(tan?)?rdr??4?d??rdr???3?3?.
0101x32264D(4)
??DR?x?ydσ???d??2?2222?Rcos?0?3122222Rcos?R?rrdr????(R?r)d? 2?23022?R3. 3 ??1?2?(R3sin??R3d?)?3?234. 求由曲面z=x2+y2与z?x2?y2所围成的立体体积.
解:两条曲线的交线为x2+y2=1,因此,所围成的立体体积为:
V???[x2?y2?(x2?y2)]d???d??(r?r2)rdr?D002?1??.
6
习题8-4
1. 计算反常二重积分??e?(x?y)dxdy,其中D:x≥0,y≥x.
D2. 计算反常二重积分??Ddxdy,其中D:x2+y2≥1. 222(x?y)a?2x0解:1.
?a0dx?exa?x?ydy??(e?e?x?ae?2a?1?2a)dx???e?e?a
2
所以??eD?(x?y)e?2a?1?2a1dxdy?lim(??e?e?a)?.
a???222?R1dxdy11112. 由?d??3dr?2?(?2),得??2?lim2?(?2)??. 2201rR???22R22R(x?y)D
复习题8
(A)
1. 将二重积分??f(x,y)dxdy化为二次积分(两种次序都要),其中积分区域D是:
D(1) ︱x︱≤1,︱y︱≤2;
(2) 由直线y=x及抛物线y2=4x所围成. 解:(1) ?dx?f(x,y)dy??dy?f(x,y)dx.
?1?2?2?11221(2) ?dx?01y42xxf(x,y)dy??dy?y2f(x,y)dx.
044y2. 交换下列两次积分的次序: (1)?dy?02a0yf(x,y)dx;
2ax?x2(2)?dx?1000f(x,y)dy;
22?x101(3)?dx?f(x,y)dy+?dx?解:(1) (2) (3)
xf(x,y)dy.
xx?x10dy?yyf(x,y)dx??dx?2f(x,y)dy.
0??2a01dx?02ax?x20f(x,y)dy??dy?022?x10aa?a2?y2a?a2?y2f(x,y)dx.
12?yy00dx?f(x,y)dy+?dx?f(x,y)dy??dy?f(x,y)dx.
3. 计算下列二重积分:
(1) ??ex?ydσ, D: ︱x︱≤1,︱y︱≤1;
D(2) (3) (4) (5) (6)
??xDD2ydxdy,D由直线y?1,x?2及y?x围成;
3
??(x?1)dxdy,D由y?x和y?x
D围成;
22(x?y)dxdy,D:︱x︱?︱y︱≤1; ??1sinydσ,D由y2??x与y?x围成; ??2yD??(4?x?y)dσ,D是圆域x+y≤R;
D222
解: (1) (2)
x?yx?yx?1x?1x?1x?1??ed???dx?edy??(e?e)dx?(e?e)D?1x111?1?111?(e?)2.
e?1??xD2ydxdy??dx?1211241x5x32292xydy??(x?x)dx?(?)?.
2125311521x1(3) ??(x?1)dxdy??dx?3(x?1)dy??(x2?x?x4?x3)dx?1?1?1?1??7.
0x0325460D(4)
22??(x?y)dxdy?4?dx?D011?x0(x2?y2)dy
?4?(2x2?x?014x312x3x2x4112?)dx?4(???x)?. 33323303??ysiny122(5) ??sinyd???dy?2y2dx??2(siny?ysiny)dy
00yy??D ??sinydy?20???R2?20yd(cosy)?1?2(ycosy?siny)2?1?. ??02?02?(6)
??(4?x?y)d???D2?0d??(4?rcos??rsin?)rdr??02R3[2R?(cos??sin?)]d?
322?R3 ?[2R??(sin??cos?)]?4?R2.
304. 已知反常二重积分??xe?ydσ收敛,求其值.其中D是由曲线y=4x2与y=9x2在第一
D2象限所围成的区域.
22解:设Da是由曲线y?4x、y?9x和y?a(a?0)在第一象限所围成.则
y4y9 ??xeDa?y2d???dy?02axe?ydx?2215a?y25a?y255?a22??yedy??ed(?y)??e. 2360144?0144144所以??xe?yd??limDa????y??xed??Da5. 1445. 计算?e?xdx.
????2解:由第四节例2以及y=e?x是偶函数,可知?e?xdx??.
??2??26. 求由曲面z=0及z=4-x2-y2所围空间立体的体积.
解:曲面z=0和z=4-x2-y2的交线为x2+y2 =4.因此,所围空间立体的体积为:
2?2 ??(4?x2?y2)dxdy??d??(4?r2)rdr?2?(8?16)?8?.
004D?7. 已知曲线y=lnx及过此曲线上点(e,1)的切线y?x.
e?(1) 求由曲线y=lnx,直线y?x和y=0所围成的平面图形D的面积;
e(2) 求以平面图形D为底,以曲面z=ey为顶的曲顶柱体的体积.
eeeee解:(1) S???lnxdx??(xlnx?x)??1.
21212(2) V??dy?01eyye2ye23yy1edx??(e?ye)dy?(?ye?e)??.
02022y12yy
(B)
1. 交换积分次序:
(1) ?dx?3f(x,y)dy; (2)?dy??1x?11x01?y2f(x,y)dx; f(x,y)dy.
(3) ?2?2dx?14?x2x2f(x,y)dy; (4) ?dx?011?1?x2x解:(1) ?dx?3f(x,y)dy??dy??1x0x13yyf(x,y)dx.
(2) ?dy??101?y2f(x,y)dx??dx?2101?xf(x,y)dy.