课时分层作业(二十) 半角的正弦、余弦和
正切
(建议用时:60分钟)
[合格基础练]
一、选择题
1α?3π?
1.已知cos α=5,α∈?2,2π?,则sin 2等于( )
??10
A.5 26
C.5
10
B.-5 25D.5 1-cos α10
=25.]
α?3π?α?3π?
A [∵α∈?2,2π?,∴2∈?4,π?,sin 2=????
4ααα
2.设α是第二象限角,tan α=-3,且sin 2 5 5 B. 5 5 3C.5 3D.-5 ααα A [因为α是第二象限角,且sin 2 43α 因为tan α=-3,所以cos α=-5,所以cos 2 =-1+cos α5 =-25.] 3.若sin74°=m,则cos 8°=( ) A.C.1-m2 1+m2 B.±D.±1-m2 1+m2 C [∵sin74°=m=cos 16°,∴cos 8°==1+m 2,故选C.] 1+cos 16° 2 3θ 4.已知cos θ=-5,且180°<θ<270°,则tan2的值为( ) A.2 B.-2 C.1 2 D.-12 B [法一:∵180°<θ<270°,∴90°<θ 2<135°, ∴tan θ 2<0, 1-??∴tan θ 1-cos θ ?-35??? 2=-1+cos θ =-1+??3?=-2. ?-5?? 法二:∵180°<θ<270°,∴sin θ<0, ∴sin θ=-1-cos2θ=-1-9425=-5, θsin -4∴tan=θ5 21+cos θ = 1+?=-2.] ??-35??? 5.已知tanθ 2=3,则cos θ等于( ) A.45 B.-4 5 C.415 D.-35 cos2θ2θθB [cos θ=2-sin21-tan22 1-324 cos2θ+sin2θ=θ=1+3 2=-5.] 221+tan221+tanα6.若cos α=-4 5,α是第三象限角,则 2 α等于( 1-tan2 ) 11 A.-2 B.2 C.2 D.-2 43 A [∵α是第三象限角,cos α=-5,∴sin α=-5. αsin2αcos 2 ααcos 2+sin2 31-5 α1+tan2∴α=1-tan2 1+ 1+sin α1 ====-αααcos α42.故选A.] sin2cos 2-sin2-51- αcos 2 二、填空题 θθ 7.设5π<θ<6π,cos 2=a,则sin 4的值等于________. 1-a2θ [由sin24=θ 1-cos 2 2 -,∵θ∈(5π,6π), θ?5π3π?∴4∈?4,2?, ??θ ∴sin 4=- θ1-cos 2 2 1-a2.] =-B+C1 8.在△ABC中,若cos A=3,则sin22+cos 2A=________. B+C1-cos?B+C?1+cos A122 -9 [sin22+cos 2A=+2cosA-1=+2cosA- 221 1=-9.] 24α 9.已知α是第三象限角,sin α=-25,则tan2的值是________. 43π-3 [∵α是第三象限角,∴2kπ+π<α<2kπ+2, πα3π∴kπ+2<2<kπ+4, α ∴tan2<-1,sinα= α2tan2 24=-α25, 1+tan22 αα 整理得12tan22+25tan2+12=0 α43 ∴tan2=-3或-4(排除).] 三、解答题 π5x1 10.已知0<x<2<y<π,cos(y-x)=13.若tan2=2,分别求: (1)sinxcosx 2和2的值; (2)cos x及cos y的值. 2tanx= 2 2×1[解](1)由tan x2 1-tan2x= 2 1-??1?2=43且x为锐角, ?2??所以cos x=13 1+tan2x=5 , 因为cos x=2cos2x=3x25 2-15,解得cos2=5, sinx而tanx2 2 = =1x15cosx2,所以sin2=2cos x=5. 2(2)由题知0<y-x<π,而cos(y-x)=5 13得到y-x为锐角, 所以sin(y-x)= 1-??5?212?13?? =13, 则tan(y-x)=tan y-tan x12 1+tan ytan x=5. 由tanx=4,所以tan y=-563 333.则cos x=5, 因为y为钝角,所以cos y=-1 1+tan2y =-3365. [等级过关练] 1.已知sin θ= m-34-2mm+5,cos θ=m+5 ,θ∈??π?2,π? ??,则tan θ2等于( ) 1 A.-3 1 C.-5或3 2 2 B.5 1D.-3或5 ?m-3?2?4-2m?2 ?+??=1,解得m=0或8,当mB [由sinθ+cos θ=1,得? ?m+5??m+5?π =0时,sin θ<0,不符合2<θ<π. 512θ1-cos θ ∴m=0舍去,故m=8,sin θ=13,cos θ=-13,tan 2=sin θ==5.] α 2.若α∈(0,π),且3sin α+2cos α=2,则tan2等于( ) 2133A.3 B.2 C.2 D.2 αααα D [∵α∈(0,π),且3sinα+2cos α=6sin2cos2+2(2cos22-1)=2,∴6sin2α2αcos+4cos=4, 22 ααα 即3sin2cos2+2cos22=2, αααα3sin2cos2+2cos223tan2+2 α3α ∴==2,解得tan=或tan=0(舍去),故选D.] ααα222sin22+cos22tan22+1sin 4xcos 2xcos x3.··=________. 1+cos 4x1+cos 2x1+cos xtan x2sin 2xcos 2xcos 2xcos xsin 2xcos x [原式=··=·=222cos2x1+cos 2x1+cos x1+cos 2x1+cos x 12 1+13513 2sin xcos xcos xsin xx ·==tan 2cos2x1+cos x1+cos x2.] 4.设0≤ α≤ π,不等式8x2-8xsin α+cos 2α≥0对任意x∈R恒成立,则α的取值范围是________. π??5π?? ?0,6?∪?6,π? [由题意知,Δ=(8sin α)2-4×8×cos 2α≤0,即2sin2α????