好文档 - 专业文书写作范文服务资料分享网站

2019-2020年中考数学试题最新分类汇编:基本作图

天下 分享 时间: 加入收藏 我要投稿 点赞

结论:

解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上, 首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.

点E即为所求.

(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.

考点:作图—复杂作图.

分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.

解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.

点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.

(2013兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)

考点:作图—应用与设计作图.

分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.

解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.

点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.

(2013,河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.

以下是甲、乙两同学的作业:

对于两人的作业,下列说法正确的是

A.两人都对B.两人都不对 C.甲对,乙不对 D.甲不对,乙对

2019-2020年中考数学试题最新分类汇编:平移

(2013?湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( )

A.(﹣2,﹣3)

考点: 坐标与图形变化-平移. 分析: 根据平移时,点的坐标变化规律“左减右加”进行计算即可. 解答: 解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1, 故点A′的坐标是(1,3). 故选C. 点评: 此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”. (2013宜宾)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为 15 .

B. (﹣2,6) C. (1,3) D. (﹣2,1)

考点:平移的性质.

分析:设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解. 解答:解:设点A到BC的距离为h,则S△ABC=BC?h=5, ∵平移的距离是BC的长的2倍, ∴AD=2BC,CE=BC,

∴四边形ACED的面积=(AD+CE)?h=(2BC+BC)?h=3×BC?h=3×5=15. 故答案为:15.

点评:本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.

(2013?绍兴)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5个单位,得到矩形AnBnCnDn(n>2).

(1)求AB1和AB2的长. (2)若ABn的长为56,求n.

考点: 平移的性质;一元一次方程的应用;矩形的性质. 专题: 规律型. 分析: (1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出

2019-2020年中考数学试题最新分类汇编:基本作图

结论:解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.点E即为所求.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保
推荐度:
点击下载文档文档为doc格式
62kra5f4hd02ra61x73m28mwx147wg01cu2
领取福利

微信扫码领取福利

微信扫码分享