? ? 也是很有趣的问题,考虑各种因素,基于一些假设,这节研究怎样运输冰山使费用最小。其中用实际数据建立了经验公式,二是假设冰山为球形,简化了融化规律等的计算。
第4章 数学规划模型
关键词:数学规划方法 lingo/lindo软件 结果深入分析 变量个数
? ? 约束条件、可行域、目标函数,构成了常说的“数学规划”模型。本章揭示了数学规划的本质,和它与传统优化数学问题的区别:常理优化模型属于函数极值问题的范畴,但实际中更多的是决策变量数、约束个数较大,且最优解往往在边界上取得的问题,因此不能用传统的“微分法”求解——因此要引入“数学规划”方法。
? ? 这一章内容不少,但都是一类问题,主要点有几个:
1. lingo、lindo求解的使用——运行结果中还有一些平时未留意的信息,可以作为结果分析来用,前两节叙述较多;
2. 一些细节之处:把一句话用数学公式表达,它往往作为约束条件,如p102的式(19);
3. 多目标规划的处理,p109的“选课策略”——基本思想是通过加权组合形成一个新的目标,从而化为单目标规划;
4. 同前面章节一样地,对一个问题解出结果后,问题虽然解决了,但分析并没有结束——我们要学习这种further discussion的精神,发现这个结果“恰与…相
同…”之类的,不妨多问自己一句:“这是偶然的吗?”然后继续分析,得出一般的结论,这样往往能看到更多的风景,得出的结论更有含金量/启发性,而不是仅仅是解决了该个问题而已。如p109选课策略。
5. 减少变量个数,简化模型、式子(简化起见,同时lingo对变量个数有限制),p115销售的例子。
6. 求最优解时,为了减少搜索范围,加快速度,可以先去一个特殊情况求出一个可行解,然后让最优解至少优于它。
第5章 微分方程模型
关键词:动态模型 合理假设 分析预测 控制
? ? 这一章是非常经典的一章,对微分方程模型作了很好的诠释、介绍,每一个模型都有丰富的价值。对于随时间连续变化的对象或状态,当我们要 1)分析变化规律;2)预测;3)研究如何控制它的时候,就要建立相应的微分方程模型。 ? ? 自然地,这样的模型功能非常强大,也具有一般性,也自然地需要在简化假设上动脑筋——如何用数学语言能表述的东西来刻画一个实际动态过程。一个方程,有时就表示着一件事,这件事有可能还持续几十年——多么有趣而强大。
5.1 传染病模型
? ? 本节是解决“传播”、“蔓延”微分方程问题的典例,模型分三部分层层递进:SI(只分为易感染着、已感染者),SIS(已感染者可以被治愈,重新变为易感染
者),SIR(治愈后具免疫力,即增加了“移出者”)。可以说从基础模型到一步步递进,是对实际传染病情况的逐渐深入、全面的考虑,而其中的分析十分重要,也是本章分析得最细的章节。其中引入了“相轨线”分析法,是很有力的工具,后面多次用到,这一节有很详细的介绍。
? ??模型改进、建模目的性、方法三者配合,是本节亮点。 5.2 经济增长模型
? ? 通过建立产值与1)资金;2)劳动力之间的关系,来研究1)资金与劳动力的最佳分配,使效益最大;2)如何调节资金、劳动力增长率,使劳动生产率有效增长。
? ? 本模型虽然不长,但推导出计量经济学一重要模型——Douglas生产函数。本节给出的模型推导稍繁,但结果简明,有合理解释。 5.3 正规战与游击战
? ? 这一节介绍了历史上用过的、经典的预测战争结局的数学模型,有传统正规战争、稍复杂的游击战,以及混合战。重点在于建模过程:如何描述战争双方的特性,如何作假设。然后用来分析硫磺岛战役。这节很好地体现了微分方程的强大。 5.4 药物在体内的分布与排除
? ? 本节建立了房室模型,研究血药浓度的变化过程,为制订给药方案、剂量大小提供数量依据。重点在于1)模型的假设:尽管是简化,但由临床试验证明是正确的,可以接受;2)对参数的估计。
先由机理分析确定方程形式,再由测试数据估计参数。 5.5 香烟过滤嘴的作用
? ? 看起来不易下手的一个问题,用恰当的假设,引入两个基本函数q,w,及物理学常用的守恒定律,建立出微分方程模型,从而构造动态模型。本例是经典的建模案例。
5.6 人口的预测和控制
? ? 本节模型与之前的区别在于:考虑年龄的分布,即除了时间外,年龄是另一个自变量。过程中重要的是数学公式中,系数、因子的实际含义要解释。 5.7 烟雾的扩散与消失
? ? 这个模型巧妙地引入了“仪器灵敏度”指标,不仅帮助建模,而且该指标本身是客观存在的,并非虚构,这样更加有说服力。 5.8 万有引力定律的发现
? ? 十分有意义的一节。我们初中就熟悉的牛顿万有引力定律,是由开普勒第三定律和牛顿第二定律一同推导出的,这一节再现了这个推导过程。这个模型告诉我们:正确假设+用数学演绎建模=对自然科学研究的巨大作用。我们要学习科学家前辈们如何创造性地运用数学方法,来提升我们解决实际问题的能力。
第6章 稳定性模型
关键词:稳定性理论 建而不解 平衡状态 趋势 相轨线
? ? 本章是建立在上一章的基础上,在微分方程基础上引入的一种重要思想/概念,那就是——对于某些问题,我们可能不关注动态过程的每个瞬时状态,而是研究稳定状态的特征,特别是时间充分长以后的状态/趋势,从而判断是否“稳定”。这
时我们往往不需要“求解”微分方程(组),即“建而不解”;而是利用“微分方程稳定性理论”直接研究平衡状态稳定性即可。
*6.6 微分方程稳定性理论简介
? ?这一节应为优先阅读的一节,介绍了如何判断一阶、二阶方程的平衡点和稳定性。数学推导稍复杂(对于未接触过的同学),重要在于了解一些概念、结论,在模型实例中来进一步理解。
6.1 捕鱼业的持续收获
? ? 研究捕鱼业产量、效益和捕捞过度问题,如何捕捞能获得最大收益。这个问题虽然看似只需要给出一个“捕捞量”的答案就可以了,但是模型整个过程分析中还是得出了许多结论,如经济学捕捞过度、生态学捕捞过度等概念。在稳定的前提下步步深入。 6.2 军备竞赛
? ? 这个问题在第二章初等模型中就出现过,这里用微分方程稳定性的知识来分析。正如本节引言所说,军备竞赛因素很多,无法圆满描述,只是想告诉我们:一个复杂实际过程可以被合理简化到什么程度,得到的结果又怎样解释实际现象。 6.3 种群的相互竞争 6.4 种群的相互依存 6.5 食饵-捕食者模型
? ? 这三节作为一个系列,用种群竞争、依存、捕食这类生物学案例来诠释稳定性模型的应用。其中,相轨线分析法再次成为主角,它的意义在于:从图中曲线上直观地看出发展趋势,且特殊点对应的意义作出解释。