一.选择题
1、-3x<-1的解集是( ) A、x<
1111 B、x<- C、x> D、x>- 33332、下列从左到右的变形是分解因式的是( )
A、(x-4)(x+4)=x2-16 B、x2-y2+2=(x+y)(x-y)+2 C、2ab+2ac=2a(b+c) D、(x-1)(x-2)=(x-2)(x-1). 3、下列命题是真命题的是( )
A、相等的角是对顶角 B、两直线被第三条直线所截,内错角相等 C、若m?n,则m?n D、有一角对应相等的两个菱形相似
22b2ab4、分式2,2,2的最简公分母是( ) 222a?2ab?ba?2ab?ba?b A、(a2-2ab+b2)(a2-b2)(a2+2ab+b2) B、(a+b)2(a-b)2
C、(a+b)2(a-b)2(a2-b2) D、a?b
5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:
44x1?86,x2?86,s12?259,s22?186. 则成绩较为稳定的班级是( )
A、八(1)班 B、八(2)班
C、两个班成绩一样稳定 D、无法确定
6、如图1,能使BF∥DG的条件是( ) A、∠1=∠3 B、∠2=∠4 C、∠2=∠3 D、∠1=∠4
7、如图2,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A?B?C?D?,若AB:A?B??1:2,则四边形ABCD的面积∶四边形A?B?C?D?的面积为
( )
A、4:1 C.1:2 B.2:1 D.1:4
图2
图1
8、如图3,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与
则点F应是G,H,M,N四点中的( ) △ABC相似,
A、H或M B、G或H C、M或N D、G或M
图3
9、如图4,DE∥BC,则下列不成立的等式是( )
AD?BDACC、?ABA、
AE B、ECEC D、DBABAC ?ADAEADDE ?BDBC
图4
10、直线l1:y?k1x?b与直线l2:y?k2x在同一平面直角坐标系中的图象如图5所示,则关于x的不等式k1x?b?k2x的解为( )
A、x>-1
B、x<-1
图5
C、x<-2 D、无法确定 二.填空题
11、计算:(1)(-x)2÷y·=____________。 12、分解因式:a3b+2a2b2+ab3= 。 13、一组数据:1、2、4、3、2、4、2、5、6、1,它们的平均数为 ,众数为 ,中位数为 ;
14、如图6,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运。
1y
图6
15、如图7所示:∠A=50°,∠B=30°,∠BDC=110°, 则∠C=______°。
图7
16、一项工程,甲单独做5小时完成,甲、乙合做要2小时,那么乙单独做要_____小时。 三.解答题 17、(1)解不等式组,并把解集在数轴上表示出来
x?1
??2
21?x≥x; 3x?216(2)解分式方程:?1?2.
x?2x?4 1?(3)先化简,再求值:
18.(6分)如图8,几何知识.
根据下面的条件完成证明.
已知:如图8,BC∥AD,BE∥AF. (1)求证:∠A?∠B;
(2)若∠DOB?135,求∠A的度数.
19、(6分)如图9,为了测量旗杆的高度,小王在离旗杆9米处的点C测得旗杆顶端A的仰角为50°;小李从C点向后退了7米到D点(B、C、D在同一直线上),量得旗杆顶端A的仰角为40°.根据这些数据,小王和小李能否求出旗杆的高度?若能,请写出求解过程;若不能,请说明理由.
图9
om?4?14m?7?1?1??.其中m=5. ??m2?9?m2?8m?16?m?3是大众汽车的标志图案,其中蕴涵着许多
图8
20、(7分)八年级某班进行小制作评比,作品上交时间为5月1日至30日,评委把同学上交作品的件数按5天一组分组统计绘制了频数直方图如图10。已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12。 (1)本次活动共有多少件作品参评?
(2)哪组上交的作品数量最多?有多少件?
(3)经过评比,第四组与第六组分别有10件与2件获奖,那么这两组中哪组的获奖率较高?
图10
21、(9分)如图11,矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM,E为垂足.
(1)求△ABM的面积. (2)求DE的长.
(3)求△ADE的面积.
图11
B 卷
一.填空题
x2?922、分式2的值为0,则x的值为( )
x?4x?323、若a?2?b2?2b?1?0,则a?,b= 。24、 C是线段AB的黄金分割点,AB?4cm,则AC? .
25、如图12,已知△ABC∽△DEF,且相似比为k,则k= ,直线y?kx?k的图像必经过 象限.
图12
26、观察下列等式:39×41=402—12,48×52=502-22,56×64=602—42,65×75=702-52,83×97=902—72…,请你把发现的规律用字母m,n的代数式表示出来: 。
27、在方程组??x?y?m,中,已知x?0,y?0,m的取值范围是 。
2x?y?6?二、28、 (6分)如图13,点D是不等边三角形ABC的边AB上的一点,过点D作一条直
线,使它与另一边相交截得的三角形与△ABC相似,这样的直线可以作几条?为什么?