【常考题】高中必修五数学上期中模拟试题及答案(2)
一、选择题
1.如果?A1B1C1的三个内角的余弦值分别等于?A2B2C2的三个内角的正弦值,则
A.?A1B1C1和?A2B2C2都是锐角三角形 B.?A1B1C1和?A2B2C2都是钝角三角形
C.?A1B1C1是钝角三角形,?A2B2C2是锐角三角形 D.?A1B1C1是锐角三角形,?A2B2C2是钝角三角形
?n2(n为奇数时)2.已知函数f(n)??2,若an?f(n)?f(n?1),则
?n(n为偶数时)?a1?a2?a3?L?a100?
A.0 C.?100
B.100 D.10200
3.已知数列?an?的首项a1?1,数列?bn?为等比数列,且bn?an?1.若b10b11?2,则anD.212 D.182
a21?( )
A.29
B.210
C.211
4.已知{an}为等差数列,Sn为其前n项和,若a3?7?2a5,则S13?( ) A.49
B.91
C.98
5.已知等比数列{an}中,a1?1,a3?a5?6,则a5?a7?( ) A.12
B.10
C.122 D.62 6.若a,b,c,d∈R,则下列说法正确的是( ) A.若a>b,c>d,则ac>bd C.若a>b>0,c>d>0,则7.若不等式m?A.9
B.若a>b,c>d,则a+c>b+d D.若a>b,c>d,则a﹣c>b﹣d
cd? ab12?在x??0,1?时恒成立,则实数m的最大值为( ) 2x1?xB.
9 2C.5 D.
5 28.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2024中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列?an?,则此数列的项数为( ) A.134
B.135
C.136
D.137
9.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,
旗杆正好处在坡度15?的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60?和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)
A.33 23B.53 23C.73 23D.83 2310.已知?an?是等比数列,a2?2,a5?A.161?41,则a1a2?a2a3?????anan?1?( ) 4C.
??n?
B.161?2??n?
321?2?n? ?31 313D.
321?4?n? ?311.等比数列{an}的前三项和S3?13,若a1,a2?2,a3成等差数列,则公比q?( ) A.3或? C.3或
13B.-3或
1 3D.-3或?
12.在?ABC中,角A,B,C所对的边分别是a,b,c,A?60?,a?43,b?4,则B?( ) A.B?30?或B?150? C.B?30? 二、填空题
B.B?150? D.B?60?
13.设等差数列?an?的前n项和为Sn,Sm?1??2,Sm?0,Sm?1?3.其中m?N*且
m?2,则m?______.
14.已知数列?an?、?bn?均为等差数列,且前n项和分别为Sn和Tn,若
Sn3n?2?,Tnn?1a4?_____. 则b415.设数列?an?n?1,n?N???满足a1?2,a2?6,且?an?2?an?1???an?1?an??2,若
?x?表示不超过x的最大整数,则[202420242024??L?]?____________. a1a2a202416.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.
?x?y?2,?17.已知实数x,y满足?x?y?2,则z?2x?y的最大值是____.
?0?y?3,?18.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K棵树种植在点
Pk?xk,yk?处,其中x1?1,y1?1,当K?2时,
???k?1??k?2??x?x?1?5T?T?kk?1?????5?5???????Ta??表示非负实数a的整数部分,例如??y?y?T?k?1??T?k?2?kk?1?????55?????T?2.6??2,T?0.2??0.按此方案第2016棵树种植点的坐标应为_____________.
19.设a?b?2,b?0,则当a?_____时,
1|a|?取得最小值. 2|a|b?y?x?20.设变量x,y满足约束条件:?x?y?2,则z?x?3y的最小值为__________.
?x??1?三、解答题
2n?n21.已知数列{an}的前n项和Sn?.
2(1)求数列{an}通项公式; (2)令bn?1,求数列?bn?的前n项和Tn. anan?122.已知数列?an?是等差数列,an?1?an,a1?a10?160,a3?a8?37. (1)求数列?an?的通项公式;
(2)若从数列?an?中依次取出第2项,第4项,第8项,L,第2n项,按原来的顺序组成一个新数列,求Sn?b1?b2?L?bn.
23.如图,在平面四边形ABCD中,AB?42,BC?22,AC?4.
(1)求cos?BAC;
(2)若?D?45?,?BAD?90?,求CD.