(4)如图分别是某立体图形三视图,请根据图说出立体图形的名称
⑴正视图
俯视图 左视图
⑵正视图 俯视图 右视图
5.小结
(1)你对本节内容有哪些认识?
(2)你有什么收获?有什么感想?有什么困惑? 6.作业设计
课本第120页练习1 ,课本第124页习题4.1第3、4题
§ 4.1.1 几何图形(三)
一、教学目标 知识与技能
⒈了解直棱柱、圆锥等简单立体图形的侧面展开图。 ⒉能根据展开图初步判断和制作立体模型。 ⒊进一步认识立体图形与平面图形之间的关系。
⒋通过描述展开图,发展学生运用几何语言表述问题的能力。 过程与方法
⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。
⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。
⒊通过展开与折叠的活动,体会数学的应用价值。 情感、态度、价值观
⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。 ⒉通过探讨现实生活中的实物制作,提高学生学习热情。 二、重点与难点
重点:直棱柱的展开图。
难点:根据展开图判断和制作立体模型。 三、教学过程
1.创设情境,导入课题 小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径? ● 蚊子 学生各抒己见,提出路线方案。 壁虎 ● 教师总结:
若在平面上,壁虎只要沿直线爬过去就可以了。而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。
蚊子
如图所示: ●
●
壁虎
圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可。若蚊子和壁虎在其他几何体上,如棱锥,正方体…… 它们展开后是什么图形呢?今天我们就来讨论它们的展开图。
2、新课探究:
(1)正方体的表面展开图
教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形。然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图。
.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)
(2)其他直棱柱的表面展开图 学生从其他直棱柱中任选一种,得到它的展开图,相互交流。教师指导总结。 (特别是圆柱体展开时,体会怎样展开会得到侧面是一个长方形) (3) 让学生分组研究观察三棱锥的展开图。
归纳:从刚才的实践过程中,大家可能已经感受到,同一个几何体,按不同的方式展开,得到的展开图也不同。
(4)你能想象出下面的平面图形可以折叠成什么多面体?动手做做看。
提问:通过实践,说说以上平面图形叠成什么多面体?
上面的图〈1〉及图〈3〉可以折叠成正三棱锥,所以它们都是正三棱锥的表面展开图。图〈2〉不可以折叠成正三棱锥,所以它不是正三棱锥的表面展开图。
归纳:一些平面图形也可以围成立体图形。
(5)提问:是所有的立体图形都能展开成平面图形吗?
老师引导得出:是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
3.小结
(1)一些立体图形是由平面图形围成的立体图形,沿着它们的一些棱将它剪开,可以把多面体展开成一个平面图形.体现了立体图形与平面图形之间的相互联系。
(2)对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。 4.作业设计
(1)课本第124页习题4.1第5题
(2)课本第125-126页习题4.1第11、12、14题
§ 4.1.2 点、线、面、体
一、教学目标: 知识技能:
1、进一步认识点、线、面、体的概念. 2、理解点、线、面、体之间的关系. 过程与方法
通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力.
情感、态度、价值观
通过联系现实世界中各种常见的几何体及情景,让学生认识数学与现实生活的密切联系.
二、教学重、难点
重点:点、线、面、体之间的关系.
难点:体会点动成线、线动成面、面动成体 三、教学过程: 1.问题情境 [问题1]
(1)举出一些你所熟悉的立体图形.
(2)① 你知道这些体是由什么围成的吗?它们有什么不同吗? ②面与面相交的地方形成了什么?它们有什么不同呢? ③线与线相交之处又得到了什么?
(3)举出生活实际中分别给体、面、线、点的形象的例子 学生先独立观察、思考,然后再讨论、交流得出以下结论: (1)体是由面围成的.面有两种,平面和曲面.
(2)面与面相交的地方形成了线,线有直的也有曲的. (3)线与线相交的地方是点.
教师对以上结论加以总结、完善.得出点、线、面、体之间的关系.即“体由面组成,面与面相交成线,线与线相交成点”.
教师鼓励学生联想身边熟悉的情景,尽可能多的举出例子,并把课前准备的挂图和物品等展示出来和学生交流.
[问题2](学生动手操作、思考并回答问题)
(1)①笔尖可以看作是一个点,这个点在纸上运动时,形成了什么? ② 通过上述运动你得出了什么结论?
③ 你能举出生活中的一些实例进一步说明这一结论吗? 教师在学生回答问题的基础上总结得到“点动成线”的结论.
学生在组内讨论、交流的基础上,举出更多实例.如:蚂蚁搬家;在一望无际的沙滩上;一个孤独的旅行者留下的一排长长的足迹… …
(2)①汽车雨刷可以看作是一条线,它在档风玻璃上运动时有什么现象? ②通过对上面现象的分析你得出了什么结论?
③你能举出生活中的一些实例进一步说明这一结论吗?
①教师让学生拿笔或直尺当雨刷在纸上演示,启发学生类比上一个问题.并鼓励学生用自己的语言说出发现的结论.
②学生通过仔细观察图片,动手实践,回答问题.得出“线动成面”的结论. ③学生经讨论、交流后举例.如:夜晚街头闪烁的霓虹灯、利用竹条编织的凉席,用扫帚扫地、用刷子刷油、钟表盘上分针时针的运动… …
(3)①长方形纸片绕它的一边旋转,形成了什么图形? ②通过对上面现象的分析你得出了什么结论? ③你能再举出一些例子进一步说明这一结论吗? ④你能找出它们之间的对应关系吗?
教师演示旋转过程,让学生通过观察,大胆猜测,想象. 学生在观察、猜测、想象之后独立思考得出结论,再通过动手实践加以验证;最后进行小组讨论、交流,回答问题.得出“面动成体”的结论.
学生经小组交流,举出例子.如把三角尺绕其一边旋转形成几何体、一摞壹元硬币……
[问题3]
(1)为什么在中国地图上,北京只是一个点,而在北京市地图上北京几乎占了整个版面?
学生先独立思考后讨论、交流.回答问题,同学们之间可以相互补充、纠正. (2)观察下面的图片,你有什么发现?构成几何图形的基本元素是什么?
学生观察图片.表述观点.
教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.
2.小结.
本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素
得到丰富多彩的图形世界.
3.布置作业.
课后收集能反映点、线、面、体之间关系的资料、图片及实物模型.
§ 4.2 直线、射线、线段(一)
教学目标 知识与技能
1、在现实情境中理解线段、直线、射线等简单的平面图形。 2、理解两点确定一条直线的事实。
3、掌握直线、射线、线段的表示方法。 4、理解直线、射线、线段的联系和区别 过程与方法
1、通过学习直线、射线、线段的表示方法,使学生建立初步的符号感。 2、通过对直线、射线、线段性质的研究,体会它所在解决实际问题中的作用,并能用它们解释生活中的一些现象。
3、运用对比法、归纳法总结差异。 情感、态度、价值观
通过对直线、射线、线段的性质的探究,使学生初步认识到数学与现实生活的密切联系,感受数学的严谨性以及数学结论的确性。
教学重难点
重点:线段、射线与直线的概念及表示方法,两点确定一条直线的性质。 难点:直线性质的发现,理解及应用及不同几何语言的相互转化。 教学过程: 一、复习引入:
(1)点、线、面、体是构成几何图形的元素。从运动的观点来看,可以说是点动成线,线动成面,面动成体。因此对几何图形的学习我们也可以按点、线、面、体的顺序展开。
(2)点是用来表示物体的位置的。点无大小之分。如何表一个点呢? 图形语言 文字语言 二、探究新知:
(1)在以前的学习中我们学过哪些线? 直线、射线、线段
(2)生活中有哪些关于直线、射线、线段的形象,试举例说明?
(3)请分别画出一条直线、射线、线段?学生画图,教师在黑板上示范,给出规范的表示方法.
(教师关注:学生是否注意到用两个大写字母表示射线时,端点的字母写在前面)
(4)如何表示一条直线、射线、线段? 图形语言 文字语言
(教师关注:学生是否注意到直线、射线、线段都有两种表示方法.) 三、讨论交流:
(1)你能结合自已所画图形寻找出直线、射线、线段的特征吗?你能发现它们之间的区别与联系吗?