3.6 从1到300的整数中
(1) 同时能被3、5、和7这3个数整除的数有A个。 (2) 不能被3、5,也不能被7整除的数有B个。
(3) 可以被3整除,但不能被5和7整除的数有C个。 (4) 可被3或5整除,但不能被7整除的数有D个。 (5) 只能被3、5和7之中的一个数整除的数有E个。 供选择的答案
A、B、C、D、E:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。
解:设1到300之间的整数构成全集E,A、B、C分别表示其中可被3、5或7整除的数的集合。文氏图如下图:
在A∩B∩C中的数一定可以被3、5和7的最小公倍数105整除,即 ∣A∩B∩C∣=?300/105?=2,同样可得 ∣A∩B∣=?300/15?=20, ∣A∩C∣=?300/21?=14, ∣B∩C∣=?300/35?=8.
然后将20-2=18,14-2=12,8-2=6分别填入邻近的3块区域. 再计算 ∣A∣=?300/3?=100, ∣B∣=?300/5?=60, ∣C∣=?300/7?=42. 所以
∣A∪B∪C∣=162.
所以本题的答案是:A=①2;B=⑨138;C=④68;D=⑦120;E=⑧124. 3.10列元素法表示下列集合。 (1) A={ x | x ∈N ∧ x2 ≤7}. (2) A={ x | x ∈N ∧ |3-x|<3}. (3) A={ x | x ∈R ∧ (x+1)2≤0}.
(4) A={
(2) A={1,2,3,4,5}. (3) A={-1}.
(4) A={<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<1,0>,<2,0>,<3,0>,<4,0>,
<1,1>,<1,2>,<1,3>,<2,1>,<3,1>,<2,2>}.
3.11求使得以下集合等式成立时,a,b,c,d应满足的条件。 1){a,b}={a,b,c}
解:根据集合相等的条件及集合的性质知: 只有当 c=a或c=b时等式成立。 2){a,b,a}={a,b}
解:根据集合性质,上式在任何时候都成立。 3){a,{b,c}}={a,{d}}
解:根据集合相等的条件及集合的性质知:只有当 b=c=d时上式成立。 4){{a,b},{c}}={{b}}.
解:根据集合相等的条件及集合性质知: 只有当 a=c=b时成立。 5){{a,?},b,{c}}={{ ? }}
解:根据集合相等的条件及集合的性质知:只有当 a= c=?并且b={ ? } 时成立。
3.12 设a,b,c,d代表不同的元素.说明以下集合A和B之间成立哪一种关系(指A?B,B?A,A=B,A?B且B?A). (1) A={{a,b},{c},{d}}, B={{a,b},{c}}. B?A
(2)A={{a,b},{b},?}, B={{b}}. B?A
(3)A={x|x∈N?x2>4}, B={x|x∈N?x>2}. B=A
(4)A={ax+b|x∈R?a,b∈Z}, B={x+y|x,y∈R}. B=A
(5)A={x|x∈R?x2+x-2=0}, B={y|y∈Q?y2+y-2=0}. B=A
(6)A={x|x∈R?X2≤2}, B={X|X∈R?2X3-5X2+4X=1 }.
B?A
3.13
(1)A={{a,b},c},B={c,d}
A∪B={{a,b}c,d} A∩B={c}
A-B={{a,b}}
A?B={{a,b},d}
(2)A={{a,{b}},c,{c},{a,b}},B={{a,b},c,{d}}
A∪B={{a,{b}},{a,b},c,{c},{d}} A∩B={{a,b},c}
A-B={{a,{b}},{c}}
A?B={{a,{b}},{c},{d}}
(3)A={x?x?N?x<3},B={x?x?N?x?2}
A∪B={x?x?N }
A∩B={2} A-B={0,1}
A?B={x?x?N?{x<2?x?3}}
(4)A={x?x?R?x<1},B={x?x?Z?x<1}
A∪B={x?x?R?x<1}
A∩B={x?x?Z?x<1} A-B={x?x?R?x?Z?x<1}
A?B={x?x?R?x?Z?x<1}
(5)A={x?x?Z?x<0},B={x?x?Z?x?2}
A∪B={x?x?Z?(x<0?x?2)}
A∩B=?
A-B={x?x?Z?x<0}
A?B={x?x?Z?(x<0?x?2)}} 3.14 计算幂集 P(A)。
(1) A={?} P(A)={ ?,{?}};
(2)A={{1},1} P(A)={ ?,{1},{{1}},{{1},1}}; (3)A=P({1,2}) A={?,{1},{2},{1,2}};
P(A)={ ?,{?},{{1}},{{2}},{{1,2}},{?,{1}},{ ?,{2}},{ ?,{1,2}},{{1},{2}},{{1},{1,2}},{{2},{1,2}},{ ?,{1},{2}},{ ?,{1},{1,2}},{ ?,{2},{1,2}},{{1},{2},{1,2}},{ ?,{1},{2},{1,2}}};
(4)A={{1,1},{2,1},{1,2,1}}
P(A)={ ?,{{1,1}},{{2,1}},{{1,2,1}},{{1,1},{2,1}},{{1,1},{1,2,1}},{{2,1},{1,2,1}},{{1,1},{2,1},{1,2,1}}};
(5)A={1,-1,2} P(A)={ ?,{1},{-1},{2},{1,-1},{1,2},{-1,2},{1,-1,2}}; 3.18 设|A|=3,|P(B)|=64, |P(A∪B)|=256,求|B|,|A∩B|,|A-B|,|A⊕B|. 解:因为 |P(B)|=64 而2的6次幂为64 所以 |B|=6
而|P(A∪B)|=256, 2的8次幂为256 所以|A∪B|=8,
|A∩B|=|A|+|B|-|A∪B|=3+6-8=1; |A-B|=|A|-|A∩B|=3-1=2; |A⊕B|=|A∪B|-|A∩B|=8-1=7。
3.19 求在1到1 000 000之间(包括1和1 000 000在内)有多少个整数既不
是完全平方数,也不是完全立方数?
解:设完全平方数的集合是A,完全立方数的集合是B,则既是完全平方数又是完全立方数的集合是A∩B。
由题意知: |A|=1000, |B|=100, |A∩B|=10.
|~A∩~B|=|S|-|A|-|B|+|A∩B|
所以|~A∩~B|=106-103-102+10=998910.