42.(2018?遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为 . 三.解答题(共3小题) 43.(2018?安徽)观察以下等式: 第1个等式: ++×=1, 第2个等式: ++×=1, 第3个等式: ++×=1, 第4个等式: ++×=1, 第5个等式: ++×=1, ……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
44.(2018?河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x是多少? 应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
45.(2018?黔南州)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点? 我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是 、 . 请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
6