氮氧化物生成机理及控制技术
前言:能源与环境是当今社会发展的两大问题,如何文明用能、合理
用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。
循环流化床锅炉是最近二十年里发展起来的一种新型燃烧技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。
1 NOx的生成机制
煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。
在煤燃烧过程中,生成的NOx途径有三个:
(1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。
(2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。
(3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。其中燃料型NOx是最主要的,它占总生成量的
60%~80%以上,热力型NOx的生成和燃烧温度的关系很大,在温度足够高时,热力型NOx的生成量可占到总量的20%;快速型NOx在煤燃烧过程中的生成量很小。另外,N2O和NOx燃料型一样,也是从燃料的氮化合物转化生成的,它的生成过程和燃料型NOx的生成和破坏密切相关。
2 影响因素分析
在循环流化床锅炉中,一方面,氮在燃烧过程中被不断氧化生成NOx,另一方面在还原性气氛中NOx也会被不断还原生成N2,因此,影响氧化、还原反应的所有因素都将影响到NOx的浓度。
2.1燃料特性的影响
由于NOx主要来自于燃料中的氮,因此,从总体上看,燃料氮含量越高,则NOx的排放量也越高;同时,燃料中氮的存在形态不同,NOx的排放量也不一样,以胺的形态存在于煤中的燃料氮在燃烧过程中主要生成NO,而以芳香环形式存在的燃料氮在挥发分燃烧过程中主要生成N2O。一般来说,褐煤、页岩等劣质燃料中燃料氮的主要存在形态是胺,故NOx
排放量较多,N2O很少;相反,烟煤、无烟煤中燃料氮的主要存在形态是芳香环,故NOx
排放量较少,而N2O很高。
煤,尤其是其挥发分中的各种元素比也会影响到NOx的排放量。显然,O/N比越大,NOx排放量较高。H/C比越高,则NO越难于被还原,故NOx排放量也越高。另外,S/N比会影响到各自的排放水平,因为S和N氧化时会相互竞争,故SO2排放量越高,NOx排放量越低。
2.2 过量空气系数的影响
当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx的生成都有一定的控制作用,采用这种方法可使NOx排放量降低15%~20%,但是CO浓度会增加,燃烧效率会下降。
当风分级时,可有效地降低NOx的排放量。一般情况下,二次风从床上一定距离送入较好,如果过低则对NOx的排放量影响甚小。随着一次风量的减少、二次风量的增加,N被氧化的速度下降,NOx排放量也随之下降,并在某一风量分配下达到最小值。
2.3 燃烧温度的影响
燃烧温度对NOx的排放量的影响已取得共识,即随着炉内燃烧温度的提高,NOx的排放量将升高,因此,可以通过降低床温来控制NOx的排放量。但是,床温的降低会带来两个不利的后果,一个是CO炉内浓度将增加,不完全燃烧热损失增大,从而使得燃烧效率下降;另一个是不利于N2O分解,从而使得N2O的排放浓度增加。
2.4 脱硫剂的影响
在循环流化床锅炉中,加入的脱硫剂为石灰石,其直接目的是降低SO2的排放量,同时对NOx的排放量也会产生明显的影响,使NO上升。脱硫剂的影响主要体现在两个方面,一个是富余CaO作为强催化剂会强化燃料氮的氧化速度,使NO的生成速度增加;另一个是富余的CaO和CaS作为催化剂会强化CO还原NO的反应过程。一般情况下,CaO对燃料氮氧化物生成NO的贡献大与其对还原性气体还原NO的贡献,从而使得NOx排放量增加。当然,富余CaO和CaS的催化作用还与石灰石的品种、粒径大小等因素有关,需作进一步的研究。
2.5 床内含炭量对降低NOx排放量的影响
在锅炉高负荷和高床料含碳量的情况下,由于下列反应:
NOx的排放量大为降低。
3
控制NOx的措施