1
专题十 综合性压轴题
类型一 函数中点的存在性问题
(2024·山东东营中考)如图,抛物线y=a(x-1)(x-3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC. (1)求线段OC的长度;
(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的表达式;
(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可; (2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC的表达式,把C坐标代入抛物线求出a的值,确定出二次函数的表达式即可; (3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线表达式,表示出纵坐标,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可. 【自主解答】
2
1
1
1.(2024·湖南衡阳中考)如图,已知直线y=-2x+4分别交x轴、y轴于点A,B,抛物线经过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)若抛物线的表达式为y=-2x+2x+4,设其顶点为M,其对称轴交AB于点N. ①求点M,N的坐标;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的表达式;若不存在,请说明理由.
2
2
2
1
类型二 图形运动中的函数关系问题
如图,在△ABC中,AB=6 cm,AC=42 cm,BC=25 cm,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点. (1)若CP⊥AB时,求t的值;
(2)若△BCQ是直角三角形时,求t的值;
(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.
【分析】(1)作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;
(2)分两种情形求解即可解决问题;
(3)分两种情形讨论,求出QM即可解决问题. 【自主解答】
2.(2024·广东中考)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连结BC. (1)填空:∠OBC= °;
(2)如图1,连结AC,作OP⊥AC,垂足为P,求OP的长度;
2
3