好文档 - 专业文书写作范文服务资料分享网站

专升本高等数学复习资料(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

4.B 在偶次根式中,被开方式必须大于等于零,所以有4?x?0且x?2?0,解得2?5.A 由奇偶性定义,因为6.解:令xx?4,即定义域为[2,4].

f(?x)?2(?x)3?3sin(?x)??2x3?3sinx??f(x),所以f(x)?2x3?3sinx是奇函数.

1?1?t2?t2?x,所以f(x)? ,故选D ?2?2t?11?2t1?2x7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:0?x?1?1,所以?1?x?0,故选B 12. 解:

?1?t,则f(t)?选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:

f(x)的定义域为[?1,4),选D

17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数

y?ax与y?logax(a?0,a?1)互为反函数,故它们的图形关于直线y?x轴

对称,选C 21.A 22.D

23.解:这是24.解:这是

lnx?1l10型未定式lim?lim?,故选B.

x?ex?ex?ex0e?型未定式 ??csc2xlncotxxcotx??limx?sinx??limlim?lim??1 2++++x?0x?01x?0x?0lnxsinxcosxsinxcosxx故选D.

ax2?bax22?2所以lim(ax?b)?0,得b?0,lim?2所以a?2,故选A 25.解:因为limx?0xsinxx?0xsinxx?026.解:b?nbn?nan?bn?nbn?bn?bn2?b选B

27.解:选D

111?limx?,故选B

x??2xx??2x2sinmxmxm29.解:lim?lim? 故选A

x?0sinnxx?0nxn28.解:因为limxsinax3?bax32?1所以lim(ax?b)?0,得b?0,lim?1,所以a?1,故选B 30.解:因为limx?0xtan2xx?0xtan2xx?0cosxx?cosxx?1,选A

?lim31.解:limx??x?cosxx??cosx1?x1?32.解:因为lim?x?0f(x)?lim(ex?1)?0,lim?f(x)?lim(sinx?1)?1 ??x?0x?0x?0所以limx?0f(x)不存在,故选D

1411xx33.解:lim(1?)x?[lim(1?)x]4?e4,选D

x?0x?0441tanx-lnxsin2x?lim? ?lim??0,选C 34.解:极限lim?()x?0xx?0cotxx?0x精选

35.解:lim?xsin?x?0?11??sinx??0?1??1,选A xx?36.解:lim37.解:

x??xsin111?limx?选B kxx??kxklimsinx?1,选B 38.解:选A 39. 解:选D

x???240.解:limx?1x2?ax?6?0,a??7,选B

tanax?lim?(x?2),a?2,选C x?0x41.解:

x?0lim?42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C

sin(2x?x2)2x?x2?lim?2,故选C 43.解:因为limx?0x?0xx44.解:因为limln(1?x)?1,故选B

x?0xtan(3x?x2)3x?x2?lim?3,故选C 45.解:因为limx?0x?0xx1?x2(1?x)1?xa46.解:因为limx?1?lim1?x1?,故选C

x?12(1?x)21ax1?x?1247.解:因为lim?lim??0,所以a?1,故选A

x?0?x?0xxtan2x48.解:因为lim?0,故选D 2x?0x49.解:由书中定理知选C 50.解:因为lim11cos?0,故选C

x??xx2x?3x?22xln2?3xln3?lim?ln6,选B 51.解:因为limx?0x?0x152.解:选A 53.解:lim2(1?cosx)?1x?0sinx2x???,选C

54.解:因为55.解:选A 56.解:limlimf(x)?1,选A

sinx?0,选C

x?01?secx57.解:选C

x?x2sin58.解:limx?0x1x?1,选D

59.解:根据连续的定义知选B

精选

60.C 61.解:选A 62.解:选A 63.解:

x?0lim?f(x)??2?f(0), lim?f(x)??x?0?2?f(0),选B

64.解:选A 65.解:因为lim选A

66.解:因为

x?0?x2?1x?1x?1??lim?x?(x?1)(x?1)?(x?1)(x?1)?2,lim??lim??2,

?x?1x?x?1x?1x?1x2?1limf(x)?1?f(0),又lim?f(x)?1?f(0),所以f(x)在x?0点连续,

x?0x?0 但

f?'(0)?lim?f(x)?f(0)x?1?1?lim??1, x?0xx

f(x)?f(0)x2?1?1f?'(0)?lim??lim??0所以f(x)在x?0点不可导,选C

x?0x?0xx67.解:选C 68.解:因为

x?0?limf(x)?1?f(0),又lim?f(x)?1?f(0),所以f(x)在x?0点不连续,从而在x?0处不可导,但

x?0当x?0时,极限存在,选B

69.解:选B 70.解:

f(x)?lim3nx??3,选A

x??1?nx71.解:limx?01?x?11??f(0),选A

x272.解:选C 73.解:因为lim1)?0,

x?1?x?1x?11lim?f(x)?lim?(x2?arccot)?? 故选B x?1x?1x?1f(x)?lim?(x2?arccot74.解:选D 75.解:因为limx?0y??,limy??2,曲线既有水平渐近线y??2,又有垂直渐近线x?0,选C

x??76.解:因为

x???limxsin1?1,所以有水平渐近线y?1,但无铅直渐近线,选A xy??excosx?exsinx,y?(0)?1?0?1.选C.

77.D 78.C 解:79.C 解:g'(x)?cosx,所以f[g'(x)]?ecosx,故选C.

11f(x0?h)?f(x0)f(x0?h)?f(x0)112280.解:lim(?)??f'(x0)??1,选C ? limh?0h?01h22?h2f(a?x)?f(a?x)f(a?x)?f(a)f(a?x)?f(a)?lim[?]?2f'(a),选B 81.解:limx?0x?0xx?xf(2?h)?f(2)f(2?h)?f(2)f(2?h)?f(2?h)? lim[? ]=2f'(2),故选A 82.解:因为limh?0h?0hh?h精选

f(x)?f(0)x(x?1)(x?2)(x?3)?lim??6,故选B

x?0x?0xxf(h)?f(?h)f(h)?f(0)f(?h)?f(0)84.解:因为lim? lim[? ]=2f'(0),故选C

h?0h?0hh?h83.解:

f'(0)?lim85.解:因为limh?0f( x0-h )?f(x0)??f'(x0),故选B

h86.解:因为lim87.解:

h?0f(1?2h)?f(1)1f(1?2h)?f(1)? lim(?2)??2f'(1)? ,故选D

h?0h?2h2?x2f'(x)??2xe,f''(x)??2e?x2?4xe2?x2,

f''(0)??2 选C

88.解:选B 89.解:90.解:91.解:92.解:

y?x29?a28x28?.....?a1x?a0,所以y(29)?29!,选B

y'?f'(ex)ex?f(x)?f(ex)ef(x)?f'(x),选C

f'(0)?limx?0f(x)?f(0)x(x?1)(x?2)?(x?100)?lim?100!,选B x?0xxy'?(exlnx)'?xx(1?lnx),选D

93.解:

f?'(2)?lim?x?2x?2?0f(x)?f(2)?lim??1, x?2x?2x?2x?2?0f(x)?f(2)?lim???1,选D x?2x?2x?2f?'(2)?lim?x?294.解:

y'?e?xln(2x)'?(2x)?x[?ln(2x)?1],选D

??95.解:选C 96.解:

y?e1[lnf(x)?lng(x)]21f'(x)g'(x),y??y?[?],选A

2f(x)g(x)97.C 98.A 99.B 100.A 101. C 102.B 103.C 104.解:

f?(x)?1?ex.令

f?(x)?0,则x?0.当x?(??,0)时f?(x)?0,当x?(0,??)时f?(x)?0,因此

f(x)?x?ex在(??,0)上单调递增, 在(0,??)上单调递减.答案选C.

105.解:根据求函数极值的步骤,

(1)关于x求导,(2)令

f'(x)?4x3?6x2?2x2(x?3)

f'(x)?0,求得驻点x?0,3

f\x)?12x2?12x?12x(x?1)

(3)求二阶导数(4)因为(5)因为

f''(3)?72?0,由函数取极值的第二种充分条件知f(3)?27为极小值.

f''(0)?0,所以必须用函数取极值的第一种充分条件判别,但在x?0左右附近处,f'(x)不改变符号,所以f(0)不是极值. 答案选A.

106.

y'(0)?1,曲线y?ex在点(0,1)处的切线方程为y?1?x,选A

精选

107.解:函数

f(x)?124?13121x?x?6x?1的图形在点(0,1)处的切线为y?1?6x,令y?0,得x??,选A

6321,抛物线y?4x在横坐标x108.

y'(4)??4的切线方程为y?2?1(x?4),选A 4109.

y'x?1?1xx?1?1,切线方程是y?x?1,选D

110.

f(x)?x?x2?c,c?1,选A

111.解:112.选C

11y'?2e2x?(x?1),y'(0)?3,切线方程y?2?3x 法线方程y?2??x,选A

23113.由函数取得极值的必要条件(书中定理)知选D 114.解:选D

2x2(1?x2)?4x22?2x2115.解:y'?,y''??,

1?x2(1?x2)2(1?x2)2?4x(1?x2)2?(2?2x2)2(1?x2)2xy'''?

(1?x2)42(1?x2)?4x24x3?12x??,令y''?0得x??1,1,y'''(?1)?0, 2323(1?x)(1?x)(1,ln2)与(?1,ln2)为拐点,选B

116.选D 117.选D 118.选C 119.解:120.解:

y?xy'?ex?y(1?y')?xy(1?y'),选B y'?ey?xeyy',选C,应选A

121.解:g'(x)122.解:g'(x)?cosx,所以f[g'(x)]?ecosx,故选C ?sinx,所以f[g'(x)]?esinx,故选A

?esin2x123.解:选A 124.解:dy125.解:因为dydsin2x;故选B

dy1?f'(x0)?,故选B

?x?0?x2?f'(x0)?x?o(?x),所以lim126.解:选C 127.解:选A 128.解:130.B 131.D

y'?f'(sinx)cosx,选C 129.解:选B

x2x2?1?11x2dx??dx??(x?1?)dx??x?ln1?x?C. 132.解:?1?x1?x1?x2所以答案为C.

133.解:由于(2arccosx)???21?x2,所以答案为B.

精选

专升本高等数学复习资料(含答案)

4.B在偶次根式中,被开方式必须大于等于零,所以有4?x?0且x?2?0,解得2?5.A由奇偶性定义,因为6.解:令xx?4,即定义域为[2,4].f(?x)?2(?x)3?3sin(?x)??2x3?3sinx??f(x),所以f(x)?2x3?3sinx是奇函数.1?1?t2?t2?x,所以f(x)?,故选D?2?2t?11?2t1?2x7.解
推荐度:
点击下载文档文档为doc格式
6098j1jd214yj364q360565jb3urvy0110r
领取福利

微信扫码领取福利

微信扫码分享