【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.
【解答】解:∵?ABCD的对角线AC、BD相交于点O, ∴BO=DO=BD,BD=2OB, ∴O为BD中点, ∵点E是AB的中点, ∴AB=2BE,BC=2OE, ∵四边形ABCD是平行四边形, ∴AB=CD, ∴CD=2BE. ∵△BEO的周长为8, ∴OB+OE+BE=8,
∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD的周长是16, 故答案为16.
【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.关键是掌握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分. 15.(3分)如图,A、B两点在反比例函数y=
的图象上,C、D两点在反比例函数y=
的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1= 4 .
【分析】设出A(a,),C(a,),B(b,),D(b,),由坐标转化线段
长,从而可求出结果等于4. 【解答】解:设A(a,
),C(a,
),B(b,
),D(b,
),则
CA=∴
﹣=2, ,
得a=
同理:BD=又∵a﹣b=3 ∴
﹣
,得b=
=3
解得:k2﹣k1=4
【点评】本题考查反比例函数上点的坐标关系,根据坐标转化线段长是解题关键. 16.(3分)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.
①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;
②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3; ③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)
2
+m;
④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为
+
.
其中正确判断的序号是 ①③④ .
【分析】①把y=m+2代入y=﹣x2+2x+m+1中,判断所得一元二次方程的根的情况便可
得判断正确;
②根据二次函数的性质进行判断;
③根据平移的公式求出平移后的解析式便可;
④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.
【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;
②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而减小,又∵﹣2<0<,点M(﹣2,y1)、点N(,y2)、点P′(0,y3)在该函数图象上,∴y2<y3<y1,故此小题结论错误; ③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)
2
+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;
④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,
则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:
,故此小题结论正确;
故答案为:①③④.
【点评】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.
三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)
17.(5分)计算:(π﹣3.14)0﹣()2+
﹣
﹣.
【分析】直接利用零指数幂的性质以及负指数幂的性质和立方根的性质分别化简得出答案.
【解答】解:原式=1﹣4+3﹣2=﹣2
.
【点评】此题主要考查了实数运算,正确化简各数是解题关键. 18.(7分)先化简:(
﹣
)÷
,再选取一个适当的x的值代入求值.
,
,两式
【分析】先对括号里的分式进行整理,
相减进行通分即可进行化简,再代入适当的值即可. 【解答】解: 化简得, 原式=
=
=﹣
取x=1得,原式=﹣=﹣
【点评】此题主要考查分式的化简求值,掌握运用分式的通分技巧及分解因式是解题的关键.
19.(7分)随机抽取某小吃店一周的营业额(单位:元)如下表:
星期一 540
星期二 680
星期三 640
星期四 640
星期五 780
星期六 1110
星期日 1070
合计 5460
(1)分析数据,填空:这组数据的平均数是 780 元,中位数是 680 元,众数是 640 元.
(2)估计一个月的营业额(按30天计算):
①星期一到星期五营业额相差不大,用这5天的平均数估算合适么? 答(填“合适”或“不合适”): 不合适 .
②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.
【分析】(1)根据平均数的定义、中位数的定义、众数的定义进行解答即可; (2)①从极端值对平均数的影响作出判断即可;
②可用该店本周一到周日的日均营业额估计当月营业额. 【解答】解:(1)这组数据的平均数=
=780(元);
按照从小到大排列为540、640、640、680、780、1070、1110, 中位数为680元,众数为640元; 故答案为:780,680,640;
(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额, 所以去掉周六、日的营业额对平均数的影响较大,
故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适; 故答案为:不合适;
②用该店本周一到周日的日均营业额估计当月营业额, 当月的营业额为30×780=23400(元).
【点评】本题主要考查了众数、平均数、中位数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.
20.(7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3. (1)尺规作图:不写作法,保留作图痕迹. ①作∠ACB的平分线,交斜边AB于点D; ②过点D作BC的垂线,垂足为点E. (2)在(1)作出的图形中,求DE的长.
【分析】(1)利用基本作图,先画出CD平分∠ACB,然后作DE⊥BC于E;
(2)利用CD平分∠ACB得到∠BCD=45°,再判断△CDE为等腰直角三角形,所以DE=CE,然后证明△BDE∽△BAC,从而利用相似比计算出DE. 【解答】解:(1)如图,DE为所作;
(2)∵CD平分∠ACB, ∴∠BCD=∠ACB=45°, ∵DE⊥BC,