好文档 - 专业文书写作范文服务资料分享网站

(完整)苏教版六年级数学下册知识点,推荐文档

天下 分享 时间: 加入收藏 我要投稿 点赞

苏教版六年级数学下册知识点

第一单元 扇形统计图

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 三、扇形面积的大小表示的意义:

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

第二单元 圆柱和圆锥 知识点一:圆柱、圆锥的认识

相关概念:

①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。

②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。 ③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。 ④圆锥的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。

知识点二:圆柱侧面积的计算方法

理解掌握:

圆柱的侧面展开图:有可能是长方形,也有可能是正方形。

①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。

长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。 ②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆

柱的高h,也就是说底面周长和高相等。

正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。 所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh

知识点三:圆柱表面积的计算方法

理解掌握:

圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2

用乘法分配率得圆柱的表面积公式 =2πr(h+r)

例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?

解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。

解:12.56÷3.14÷2=2(厘米)

2×3.14×2×(12.56+2)=182.8736平方厘米

答:做一个这样的罐头盒需要182.8736平方厘米铁皮。

知识点四:圆柱体积的计算方法

理解掌握:

利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。

相关公式:①已知半径和高,V圆柱=πr2h

②已知直径和高,V圆柱=π(d÷2)2h ③已知周长和高,V圆柱=π(C÷2π)2h

难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。 得到的结论:圆柱的底面周长等于长方体的两条长的和;

圆柱的半径等于长方体的宽; 圆柱的高等于长方体的高; 圆柱的体积等于长方体的体积;

★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。

知识点五:圆锥体积的计算方法

理解掌握:

根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。

用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。 相关公式:只需要在圆柱的相关公式前面乘以三分之一。 ①已知半径和高,V圆锥=1/3πr2h ②已知直径和高,V圆锥=1/3π(d÷2)h ③已知周长和高,V圆锥=1/3π(C÷2π)2h 重点解析:

在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。 例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?

解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)h

1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米 1.7×6.28=10.676吨 答:这堆沙子共重10.676吨。

知识点七:圆柱和圆锥的横截面

理解掌握:★圆柱横截面的分割方法:

① 按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。 ② 按平行于底面分割,这样分割的横截面是圆。 圆锥横截面的分割方法:

① 按圆锥的高分割,这样分割的横截面是等腰三角形。 ② 按平行于底面分割,这样分割的横截面是圆。

2

第三单元 解决问题的策略

学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。

第四单元 比例

知识点一:图像的放大和缩小 理解掌握:

把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n; 把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。 知识点二:比例的意义 理解掌握:

1、比例:表示两个比相等的式子。任何一个比例都是由两个内项和两个外项组成。

2、比和比例的区别:

(1)比是表示两个数相除的关系。比例是表示两个比相等的关系。 (2)比由两项组成(前项、后项)。比例由四项组成(两个内项、两个外项)。

知识点三:应用比的含义组成比例

理解掌握:

判断两个比能否组成比例,关键要看它们的比值是否相等。若比值相等,则能组成比例;若比值不想等, 则不能组成比例。 知识点四:比例的基本性质

理解掌握:

比例的基本性质:在比例里,两个外项的积等于两个内项的积。 若a:b=c:d,那么ad=bc。

若用分数表示比a/b=c/d,那么ad=bc。------十字交叉法 知识点五:解比例 理解掌握:

解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。

例1: 5:8=x:16 1/9 : 1/4 =x:18

8x=5×16 4:9 =x:18

x=10 9x =4×18

x =8

知识点六:用比例解应用题

解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答

例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元?

解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是:

(A商品原来的价格+420元):(B商品原来的价格+420元)=6:5 利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元 列出比例方程

(5x+420):(3x+420)=6:5

(5x+420)×5 =(3x+420)×6------比例基本性质

25x+2100 =18x+2520------乘法分配率 25x-18x=2520-2100------等式基本性质

x =60

5×60=300元

答:A商品原来300元。

知识点七:比例尺的意义 理解掌握:

比例尺就是图上距离与实际距离的比。 图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。

相关公式:(1)比例尺=图上距离÷实际距离

(2)图上距离=比例尺×实际距离 (3)实际距离=图上距离÷比例尺

知识点八:比例尺的应用 理解掌握:

(1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例 尺。如1:40千米=1:4000000厘米

(完整)苏教版六年级数学下册知识点,推荐文档

苏教版六年级数学下册知识点第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,
推荐度:
点击下载文档文档为doc格式
5z2lf1e0eh423gj8gje700kc52051d00kd4
领取福利

微信扫码领取福利

微信扫码分享