好文档 - 专业文书写作范文服务资料分享网站

2024-2024中考数学试卷(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

两个三角形面积作差即可求出结果. 【详解】

解:根据反比例函数k的几何意义可知:?AOP的面积为∴?AOB的面积为故答案为8. 【点睛】

本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于基础题型.

11k1,?BOP的面积为k2, 221111k1?k2,∴k1?k2?4,∴k1?k2?8.

222214.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:

2011 2【解析】 【分析】

分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:a1??1,a2?1111?,a3??2,a4???1,… 1?a121?a21?a3由此可以看出三个数字一循环,

2014÷3=671…1,则a1+a2+a3+…+a2014=671×(-1+故答案为

20111+2)+(-1)=. 222011. 2考点:规律性:数字的变化类.

15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案

解析:5. 【解析】 【分析】

过A作AC?x轴,过B作BD?x轴于D,于是得到?BDO??ACO?90?,根据反比例函数的性质得到S?BDO?251,S?AOC?,根据相似三角形的性质得到22OBS?BOD?OB??5,根据三角函数的定义即可得到结论. ,求得???5?OAS?OAC?OA?【详解】

过A作AC?x轴,过B作BD?x轴于, 则?BDO??ACO?90?, ∵顶点A,B分别在反比例函数y?∴S?BDO?1?5?x?0?与y??x?0?的图象上, xx51,S?AOC?, 22∵?AOB?90?,

∴?BOD??DBO??BOD??AOC?90?, ∴?DBO??AOC, ∴?BDO:?OCA,

S?BODS?OAC5?OB?2????1?5, ?OA?22∴

OB?5, OAOB?5, OA∴tan?BAO?故答案为:5.

【点睛】

本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.

16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣43 【解析】 【分析】 【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠

BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3, ∴∠AOE=45°,ED=1, ∴AE=EO=3,DO=3﹣1, ∴S正方形DNMF=2(3﹣1)×2(3﹣1)×S△ADF=

1=8﹣43, 21×AD×AFsin30°=1, 2∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43. 故答案为12﹣43.

考点:1、旋转的性质;2、菱形的性质.

17.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到

解析:6 【解析】

分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6. 详解:∵BD=CD,AB=CD, ∴BD=BA,

又∵AM⊥BD,DN⊥AB, ∴DN=AM=32,

又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP, ∴∠P=∠PAM,

∴△APM是等腰直角三角形, ∴AP=2AM=6, 故答案为6.

点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.

18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式

方程的增根是3当x=3时3-5=-m解得m=2故答案为:2

解析:2 【解析】

分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.

详解:分式方程可化为:x-5=-m, 由分母可知,分式方程的增根是3, 当x=3时,3-5=-m,解得m=2, 故答案为:2.

点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行: ①让最简公分母为0确定增根; ②化分式方程为整式方程;

③把增根代入整式方程即可求得相关字母的值.

19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=

解析:10 【解析】 【分析】

试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解. 【详解】

(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2) =[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2) =(-2)2+2×3 =10 故答案为10 【点睛】

2ab+b2求解,整体思想的运用使运算更加简便. 本题考查了完全平方公式:(a±b)2=a2±

20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要

解析:【解析】 【分析】

利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案. 【详解】

∵a?b+|b﹣1|=0, 又∵a?b?0,|b?1|?0, ∴a﹣b=0且b﹣1=0,

解得:a=b=1, ∴a+1=2. 故答案为2. 【点睛】

本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.

三、解答题

21.(1)原来每小时处理污水量是40m2;(2)需要16小时. 【解析】

试题分析:?1?设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.

?2?根据960??1.5?40??16即可求出.

试题解析:?1?设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,

根据题意得:

12001200??10, x1.5x 去分母得:1800?1200?15x, 解得:x?40,经检验x?40 是分式方程的解,且符合题意, 则原来每小时处理污水量是40m2;

(2)根据题意得:960??1.5?40??16(小时), 则需要16小时.

22.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台. 【解析】 【分析】

(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间?工作总量?工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)设A型机器安排m台,则B型机器安排(10?m)台,根据每小时加工零件的总量

?8?A型机器的数量?6?B型机器的数量结合每小时加工的零件不少于72件且不能超过

76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案. 【详解】

(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,

2024-2024中考数学试卷(含答案)

两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k的几何意义可知:?AOP的面积为∴?AOB的面积为故答案为8.【点睛】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于基础题型.11k1,?BOP的面积为k2,221111k1?k2,∴k1?k2?4,∴k1?k2?8.222214.【解
推荐度:
点击下载文档文档为doc格式
5z1dr0w92k2xc786b4a94zk8m0hvru00ry5
领取福利

微信扫码领取福利

微信扫码分享